Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses

이두호*
Doo-Ho Lee

(2005년 3월 28일 접수 : 2005년 6월 20일 심사완료)

Key Words : Optimal Treatment (최적배치), Unconstrained Damping Layer (비구속 제진층), Viscoelastic Material (병합성 물질), Fractional Derivative Model (유리미분모델), Design Sensitivity (설계민감도)

ABSTRACT

An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK’s equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing vibration responses by means of unconstrained damping layer treatment.

기호설명

\[a(T) \]: 온도에 따른 이동계수 (shift factor)
\[b \]: 설계변수
\[\eta \]: 손실계수 (loss factor)
\[E^* \]: 복소 영의 계수 (complex modulus)
\[f \]: 주파수 (frequency, Hz)
\[h \]: 보와 제진층 두께 비 (\(= H_2 / H_1 \))
\[H_1 \]: 보의 두께
\[H_2 \]: 제진층의 두께
\[i \]: 단위허수 (\(= \sqrt{-1} \))
\[K \]: 강성행렬 (stiffness matrix)

\([M \]: 질량행렬 (mass matrix)
\([\rho \]: 밀도
\([T \]: 절대온도 (temperature)
\([U \]: 탄성변형 에너지
\([x \]: 변위 (displacement)

1. 서 론

손실계수가 큰 점탄성 물질 (viscoelastic material)을 이용하여 구조물의 진동을 수동적으로 제어하는 방법은 경제적으로 비용이 적게 들 뿐만 아니라 신뢰성 면에서도 우수하기 때문에 많이 이용되고 있다. 구조물의 표면에 점탄성층을 부착하여 진동을 저감시키는 방법은 구속제진층 (constrained damping layer)을 이용하는 방법과 비구속 제진층 (unconstrained damping layer)을 이용하는 방법으로 나눌 수 있다.
비구속 제진층은 낮은 비용으로 제진 처리를 할 수 있기 때문에 자동차나 가전 제품 등의 대량 생산품의 진동 제어용으로 많이 쓰이고 있다.

제진층 부착위치는 최적화하려는 노력을 많은 연구자에 의해 수행되었으나 주파수와 음등에 따른 점탄성 층의 특성 변화를 효과적으로 고려한 경우는 거의 없었다.\(^{1-6}\) 최근에 저자 등들은 주파수와 음등의 변화에 따른 점탄성물질의 특성 변화를 고려한 유리미분모델을 이용한 정적적제제진제부착위치의 최적화에 효과적인 방법을 보이고 손실계수의 최대가 되는 제진층의 깊이를 최적화하는 방법을 제시하였 다.\(^{7,8}\)

이 연구에서는 선행 연구를 확장하여 비구속형 점탄성 제진물질 부착된 보의 강도계계응답을 최소화하는 제진제 부착위치를 최적 설계하는 방법을 제안하고 수치 예제를 통하여 그 효용성을 검증한다.

2. 비구속 제진층 보의 진동 응답 해석

2.1 점탄성 물질의 모델링

복소계수\((\text{complex modulus})\) 개념을 이용하면 점탄성 물질의 음력-변형 관계는 주파수 영역에서 다음과 같이 기술될 수 있다.

\[
\sigma = E^* \varepsilon = E(1+i\eta)\varepsilon
\]

이 식에서 \(E^* \), \(E \), \(\eta \)는 각각 복소계수, 저장계수\((\text{storage modulus})\)와 손실계수\((\text{loss factor})\)이고 상 점자 \(* \)는 복소수를 의미한다.

온도의 변화에 따른 점탄성 물질의 복소계수 변화는 온도-주파수 중첩원리\((\text{temperature-frequency superposition principle})\)\(^{9}\)을 이용하면 온도의 영향을 주파수의 영향으로 환산할 수 있고, 환산은 온도변의 함수인 이동계수 \(a(T) \)로 표현된다. 대부분의 점탄성 물질에서 \(\log \alpha(T) \)와 \(1/T \)는 비례하는 관계를 보이는 것으로 알려져 있고 다음과 같이 표현할 수 있다.\(^{9}\)

\[
\log \alpha(T) = d_1 \left(\frac{1}{T} - \frac{1}{T_0} \right)
\]

위 식에서 \(d_1 \)은 비례상수이고 \(T_0 \)는 기준온도이다.
환산 주파수의 변화에 따른 점탄성 물질의 복소계수는 일차 유리미분모델\((\text{fractional derivative model})\)\(^{10,11}\)을 이용하면 주파수영역에서 다음과 같이 간단하게 표현할 수 있다.

\[
E^* = E(1+i\eta) = \frac{a_1 + b_1 (if\alpha(T))^\beta}{1 + c_1 (if\alpha(T))^\beta}
\]

여기서 \(a_1, b_1, c_1, \beta \)는 물질상수이다. 그러므로 상수, \(a_1, b_1, c_1, \beta \)를 알고 있다면 점탄성 물질의 감쇠특성 을 주파수 및 음등에 따라서 쉽게 기술할 수 있고 점탄성 물질의 물질상수 \(a_1, b_1, c_1, \beta \)는 감쇠 특성시험 을 여러 실험에 대하여 행한 다음 케브 피팅을 통하여 결정할 수 있다.\(^{9}\)

2.2 제진층을 갖는 보의 고유 모드 해석

점탄성 층을 갖는 보의 해석방법 중에서 간단하면서도 정확한 해석으로 가장 많이 쓰이는 방법이 Ross, Ungar, Kerwin\((\text{RUK})\) 중에 의해 제안된 등가 강성법이다.\(^{12}\) RUK 식에 의하면 점탄성 층의 저장계수, 손실계수는 각각 \(E_2, \eta_2 \)이고 보의 저장계수, 손실계수, 이차 변형 모멘트가 각각 \(E_1, \eta_1, I \)일 때, 등가의 복소 차점 강성\((\text{flexural rigidity}) (ED) \)는 다음과 같이 쓸 수 있다.

\[
\frac{(EI)^*}{(E_1 I_1)^*} = 1 + \epsilon^* h^4 + 3(1+h)^3 \frac{e^*h}{1+e^*h}
\]

여기서 \(h = H/H_1 \), \(e^* = E_2^*/E_1^* \)이다. 식 (4)를 이용하면 점탄성 제진층이 부착된 보의 등가 강성\((\text{storage modulus})\)와 등가 손실계수를 계산할 수 있다.

Fig.1과 같이 제진층을 포함하는 구조계를 유한요소\((\text{finite element})\)로 모델링 하면, 점탄성 제진층을 갖는 부분은 식 (4)에 의해 정의되는 등가 강성을 갖는 보 요소\((\text{beam element})\)로 모델링 되고, 점탄성 제진층을 갖지 않는 부분은 별도의 강성을 갖는 보로 모델링 할 수 있다. 처짐과 회전변위를 갖는 보 요소

Viscoelastic Layer

Base Beam

646/한국소음진동공학회논문집/제 15 권, 제 7 호, 2005년
진동응답을 최소화하는 비구속형 제진기의 제진 부위 최적설계

를 고려하고 전단 변형 에너지를 무시하면 유향요소 법의 절차에 따라 구성된 계의 운동방정식은 다음과 같이 쓸 수 있다.

\[M\ddot{x} + Kx = f \quad (5) \]

여기서 \(M \) 과 \(K \)는 각각 질량행렬(mass matrix)과 강성행렬(stiffness matrix)이고, \(x \)와 \(f \)는 각각 변위벡터와 외력벡터이다. 구조계가 등장강성을 갖는 보로 이루어져 있고 접탄성 토출을 포함하는 경우 강성행렬, \(K \)는 복소수 값이 되며 손실계수와는 다음과 같은 관계식을 만족한다.

\[K = K_r + iK_i = K_r(1+i\eta) \quad (6) \]

위 식에서 \((\cdot)_r, (\cdot)_i\)는 각각 실수부와 허수부를 의미한다. 조화운동을 가정하면 식 (5)로 표현되는 계의 실수 편차방정식은 다음과 같이 쓸 수 있다.

\[K_r y = \zeta M y \quad (7) \]

위 식에서 \(y \)는 고유벡터(eigenvector)이고 \(\zeta(=\omega^2) \)는 고유값(eigenvalue)이다. 식 (7)로 표현된 고유값 문제의 강성행렬은 절단성 직선의 영향으로 생기는 계수 값 수의 함수가 되어 변형 방정식이 된다. 그러나 절단성 물질의 강성계수의 변형에 무관하다고 가정하면 축차 과정을 통하여 고유값 문제를 씁 수 있다.\(^{28}\).

2.3 제진층을 갖는 보의 진동응답해석
제진층을 갖는 보의 동적응답은 모드증합(modal superposition)을 이용하면 다음과 같이 쓸 수 있다.

\[x = \sum_{k=1}^{m} a_k y_k \quad (8) \]

여기서 \(m \)은 모드 수이며, \(y_k \)는 \(k \)번째 고유벡터이고, \(a_k \)는 \(k \)번째 모드좌표이며 다음과 같이 표현된다.

\[a_k = \frac{y_k^T f}{\zeta_k(1+i\eta)} - \omega^2 \quad (9) \]

식 (9)에서 \(\eta \)는 \(k \)번째 모드의 손실계수이다. 특정 고유모드에 대한 손실계수는 다음과 같이 정의된다.

\[\eta_k = \sum_{j=1}^{n} \frac{n_j U_j}{\sum_{j=1}^{n} U_j} = \sum_{j=1}^{n} \frac{n_j U_j}{U} \quad (10) \]

위 식에서 \(\eta \)는 \(k \)번째 고유모드의 손실계수이, \(n \)은 유향요소의 개수, \(\eta \)는 \(j \)번째 요소의 손실계수이고, \(U_j \)는 \(j \)번째 요소의 최대 변형 에너지다. 식 (10)의 최대 변형에너지 정기를 구하기 위해서는 복소 고유벡터를 사용해야 한다. 그러나 감쇠가 크지 않은 경우, 감쇠계의 고유조건수와 고유모드는 비감쇠계의 고유조건수와 고유모드와 같다고 가정할 수 있다. 결과적으로 실수 고유값 문제를 풀고 각 모드의 조합변형에너지 를 사용하여 각 모드의 손실계수를 구하는 것이 일반적이다.\(^{12}\). 본 연구에서 실수 고유무도를 사용하여 각 모드의 손실계수를 계산한다.

Fig. 2 Pinned-pinned unconstrained beam problem

<table>
<thead>
<tr>
<th>Table 1 Material properties of the beam problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material property</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>E(GPa)</td>
</tr>
<tr>
<td>(\eta)</td>
</tr>
<tr>
<td>(\zeta)</td>
</tr>
<tr>
<td>(\beta)</td>
</tr>
<tr>
<td>(\rho [kg/m^3])</td>
</tr>
<tr>
<td>Thickness [mm]</td>
</tr>
<tr>
<td>(T_0 [\degree C])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Comparison of eigenfrequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

한국소음진동공학회논문집/제 15 권 제 7 호, 2005년/647
3. 점탄성 제진 부위 최적설계

3.1 비구속 감쇠층 설계민감도 해석

동적응답을 최소화하는 제진 부착위치를 최적화하기 위해서는 제진 부위의 변화에 따른 강재진동응답의 변화율을 알아야 한다. 식 (8)로 표현된 강재진동응답 \(x \)를 설계변수 \(b \)로 미분하면 다음과 같이 쓸 수 있다.

\[
\frac{dx}{db} = \sum_{k=1}^{n} \left(\frac{da_k}{db} y_k + a_k \frac{dy_k}{db} \right) \tag{11}\]

여기서

\[
\frac{da_k}{db} = \frac{dy_k}{db} \cdot f \cdot (\xi_k (1+i\eta_k) - \omega^2)^{-1} \cdot \left[y_k f \left(\frac{d\xi_k}{db} (1+i\eta_k) + i\xi_k \frac{d\eta_k}{db} \right) \right] \tag{12}\]

식 (11, 12)의 진동응답에 대한 설계민감도는 고유 값 및 고유벡터 설계민감도와 손실계수에 대한 설계 민감도를 일반 계산할 수 있다.

비구속 제진층을 갖는 보의 손실계수에 대한 설계 민감도는 손실계수 표현식 (10)을 설계변수로 미분하여 다음과 같이 얻어진다.

\[
\frac{dn_k}{db} = U^{-1} \left\{ \sum_{i=1}^{m} \left(\frac{dn_{ei}}{db} U_{ei} + \eta_k \frac{dU_{ei}}{db} \right) - \eta_k \frac{dU}{db} \right\} \tag{13}\]

여기서 \(U_{ei} \)와 \(i \)의 전체 변형에너지 \(U \)는 요소 고유벡터 \(y \)와 강성행렬 \(K \)로 다음과 같이 표현된다.

\[
U_{ei} = \frac{1}{2} y_e^T K_e y_e \tag{14}\]

\[
U = \frac{1}{2} y^T K y \tag{15}\]

그리므로 식 (13)에서 변형에너지에 대한 미분 값은 고유벡터에 대한 설계민감도를 일반 계산할 수 있고, 요소 손실계수에 대한 미분, \(\frac{dn_{ei}}{db} \)는 다음과 같이 다시 쓸 수 있다.

\[
\frac{dn_{ei}(b,f,T)}{db} = \frac{\partial d_{ei}}{\partial f} + \frac{\partial d_{ei}}{\partial f} + \frac{\partial d_{ei}}{\partial b} \tag{16}\]

식 (16)에서 \(m \)이 일정하다고 가정하면 우변의 마지막 항은 영이 되며 나머지 항은 고유값 설계민감도와 식 (3, 4)을 미분함으로써 얻을 수 있다\(^{[8]}\).

\[
\frac{\partial d_{ei}}{\partial f} = \frac{\Im \left(\partial E^*/\partial f \right) Re(E^*) - \Im (E^*) Re(\partial E^*/\partial f) \right)}{(Re(E^*))^2} \tag{17}\]

위 식에서 \(\Im (\cdot) \)와 \(Re(\cdot) \)는 각각 실수부와 허수부를 의미한다. 식 (17)에서 \(\partial E^*/\partial f \)는 복소계수의 유리미분 표현식 (3)과 제진보의 등가강성식 (4)을 미분함으로써 얻을 수 있다. 식 (16)의 \(f \equiv df/db \)는 고유값 설계민감도 \(\xi \)와 \(\xi = 8\pi^2 f \)의 관계를 갖고 고유값 민감도는 다음과 같은 식으로부터 구할 수 있다\(^{[14]}\).

\[
\xi_k = y_k \frac{dK}{db} y_k - \xi_k y_k \frac{dM}{db} y_k \tag{18}\]

648/한국소음진동공학회논문집/제 15 권 제 7 호, 2005년
다음으로 임의의 k번째 고유벡터에 대한 민감도 $\frac{\partial y_k}{\partial b}$는 고유문제 방정식 (7)을 미분하고 고유벡터 민감도를 고유좌표로 근사한 후, 고유벡터의 직교 조건을 이용하면 다음과 같이 구할 수 있다\(^{(8,15)}\).

$$\frac{\partial y_k}{\partial b} = \sum_{j \neq k} \left(y_j^T \frac{\partial K}{\partial b} \frac{\partial M}{\partial b} y_k \right) y_j - \frac{1}{2} \left(y_k^T \frac{\partial M}{\partial b} y_k \right) y_k$$

(19)

그리므로 식 (11)의 진동응답에 대한 설계민감도를 계산하기 위해서는 고유치 및 고유벡터 설계민감도와 식 (3)과 (4)의 복소계수의 등가강성에 대한 해석적인 미분이 필요하게 되며, 전체적으로 한 변의 고유값 문제와 간단한 산술계산으로 설계민감도 계산을 효율적으로 수행할 수 있다.

제안된 설계민감도 해석방법을 검증하기 위하여 Fig.2의 보 문제에 대하여 설계민감도 해석을 수행하였다. 설계변수는 제진동의 길이이고 물성값은 2장에 서와 같다. 제진동이 보의 1/2에 부착되어 있을 때 ($b=100$ mm) 외력 작용의 리셈턴스 값에 대한 설계민감도 값을 Fig.4에 그렸다. 비교를 위하여 0.1%의 설계변수를 변화시켜 계산한 전방 유한차분법의 결과와 비교하였다. 그림을 보면 두 결과는 잘 일치하고 있어 제시된 설계민감도 해석 절차가 유효함을 증명하고 있다.

3.2 제진동 부착부위의 최적화

적탄성 제진동의 두께가 일정하다고 가정하고 일정한 제직의 제진동이 주어졌을 때 진동응답을 최소화 하는 제진 부위의 최적설계 문제는 다음과 같은 최적화 문제로 정의할 수 있다.

![Fig.3 Comparison of point receptance of the beam problem](image)

![Fig.4 Sensitivity calculation results of the beam problem compared with those of the FDM](image)

![Fig.5 Overhead view of optimal damping treatment according to the total amount of the damping material](image)
Find design variables b such that

$$\text{minimize} \quad \Phi (b; f; T)$$

subject to $\text{volume} (b) = \text{const.}$

and $b_L \leq b \leq b_U$ \quad (20)

여기서 b는 설계변수 벡터로 제진층의 피복 길이와 높이이고, b_L과 b_U는 각각 설계변수의 하한 값과 상한 값이다. 목적함수 Φ는 대시벨 스케일로 나타낸 진동응답의 크기와 일정 기준 값 x_{target}과의 차의 제곱 면적을 측정하였다. 단, 진동응답이 기준 값보다 높은 영역만을 면적에 포함시킨다. 이를 수식으로 표현하면 다음과 같이 된다.

$$\Phi (b) = \int_{b_L}^{b_U} \langle \ddot{x} \rangle \ddot{\ddot{x}} \ddot{df} \quad \text{where} \quad \dddot{x} = 20\log_{10} \frac{\|x\|}{x_{\text{ref}}} - x_{\text{target}} \quad (21)$$

여기서 $\langle a \rangle$는 a가 양수이면 1이고 a가 음수이면 0인 함수이다. $\| \cdot \|$는 벡터의 크기를 나타낸다.

Fig. 2와 같은 비구층형 점탄성 제진층을 갖는 보 구조물의 제진 부위를 최적화하기 위하여 범용 최적화 프로그램인 IDESIGN10를 이용하여 식 (20)의 최적화 문제를 풀었다. 보의 유한요소모델은 3.1절의 등가 보요소 모델과 동일하며 모든 물성값은 동일한 값을 사용하였다. IDESIGN을 구동하기 위한 목적함수의 설계변수로 둔는 3.1절에 제시된 공식을 이용하여 계산하였다.

보의 두께를 2 mm로 고정하고 제진체의 양과 주변온도를 변화시켜보면서 응답이 최소가 되는 제진층의 부착위치를 Fig. 5 나타내었다. Fig. 5는 보를 위에서 본 것을 그린 것이며, h는 제진체의 양을 나타내는 값으로, 주어진 제진체가 보 전체의 50%에 피복되었을 때의 높이(mm)를 의미한다. 계산에 사용된 주파수 범위는 1~1000 Hz로 주파수 중점을 1 Hz로 하여 계산하였고, x_{ref}와 x_{target}은 각각 1과 120 dB였다. 그림을 살펴보면 최적의 제진층 위치는 제진층과 보의 두께 비와 제진층의 온도에 따라 크게 달라질 수 있으며, 주어진 제진체의 양의 적합성도, 또한 온도가 높으면 중앙부에 집중되는 현상을 보여준다. 그러나 이와 같은 최적의 제진 부위는 점탄성 물질의 특성과 가진 부위, 경계조건 등에 따라 바뀔 수 있을 수 있으므로 유의 하여야 한다. Fig. 6에는 초기상태와 최적화된 후의 응답을 몇몇 온도에서 비교하였다. 그림을 살펴보면 낮은 온도에서는 제진 부위의 최적화가 전체강성 또는 강성을 크게 증가시키지 못하나 높은 온도에서는 효율적으로 증가시킬 수 있다.

4. 결론

비구층형 점탄성 제진층을 갖는 보에 대하여 진동응답을 최소화하는 제진체의 부착위치를 결정하는 방법을 제시하였다. 제진층을 갖는 보는 유리미분모델을 사용하여 점탄성 물질의 주파수 및 온도에 따른 강성계수 및 손실계수를 표현하고 등가 강성 및 손실계수는 보 요소로 모델링 하여 고유값 문제를 정의한 후 모드에너지 범위에 의하여 각 모드의 손실계수를 계산하고 모드증폭법을 이용하여 진동응답을 계산하였다. 계산된 진동응답이 최소가 되도록 하는 점탄성 제진층의 부착위치를 설계변수로 하는 최적화 문제를 정의하고 해석적으로 유도된 설계변수에 공식을 이용하여 최적 해를 구하였다. 수치예제를 통하여 제시된 정식화과정을 확인하였으며 계산된 방
법은 매우 효과적으로 진동응답을 최소화할 수 있음을 보였다.

후 기

본 연구는 동의대학교 교내 연구 과제\(^{(2004-\text{AA134})}\)의 지원으로 수행되었음.

참 고 문 헌

(7) 이두호, 황우석, 2003, “비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화,” 한국소음진동공학회논문집, 제 13 권, 제 12 권, pp.938∼946.

