Today: 2-D Transformations

Transformations are functions applied to points in space

p'=f(p)

Provide a mechanism for manipulating geometric models

Transformations are essential pieces of graphics systems
* OpenGL and PostScript, for instance, use them extensively

Why Do We Need Transformations?

Makes modeling more convenient
« for example, often easier to generate models around origin
—gluSphere() draws a sphere of radius r about the origin
+ can then move them to final position with transformations

Model viewing process via transformations
* projecting 3-D to 2-D will be done this way

Animation
« transformations as a function of time creates motion




Linear Algebra in 30 Seconds

We represent points as vectors p = [x y z] ~__ptq
« vectors add according to parallelogram rule ’
* a linear combination of two vectors is

ap+pq

» set of vectors is linearly independent if none is a linear
combination of the others

* a basis for a space is a linearly independent set of vectors
whose linear combinations include all vectors in the space

1 0
standard basis for 2-D plane: e, :{O} e, :L}

* but there are infinitely many possible bases

Linear & Affine Transformations

We’ll be specifically interested in linear transformations

flap+pq)=af(p)+Bf(q)

« transformation of shape determined by effect on vertices
+ a crucial property that allows for efficient implementation

And the related class of affine transformations
f(p+a(q-p))=f(p)+af(q -p)

* preserves affine combinations (e.g., they map lines to lines)
« another view: a linear transformation + a translation
« this is a more general class of functions




Translation

Offset all points by constant amount

x'=x+Ax

y'=y+ly
Written as more concise vector equation

' = +
vl ly] Ay
or
p'=p+d

Scaling

Scale all points by constant amount
x'=sx
y'=ty
And written as a vector equation
x"| |s Ofx
y'] [0 t]ly
or
p'=Sp

Squash/stretch along x & y axes




Rotation of Points About Origin

First, write points in polar coordinates {x'}
X = pcos@ y= psin @ oy
x'=pcos(p+0)  y'=psin(@+0) ;
x
And solve for the new positions A . {y}
x'=xcosf -ysind %

y'=xsind +ycosf
Can write this as a vector equation as well
x"| |cosf -sin@| x
y' sind cosé ||y

L e

P =Rp

The Three Fundamental Transformations

Translation: p'=p+d
Scaling: P'=Sp
Rotation: P =Rp

We can represent any affine transformation as a sequence of these 3

Translation is only one not represented as matrix multiplication
* because it's not a linear transformation
+ wouldn't it be nice if we could come up with a matrix formulation!




Homogeneous Coordinates

Let’s add an extra dimension to our vectors

x a
position: [x}ﬁ y direction: [a}_} b
Il b1 o

« this added dimension is the homogeneous coordinate
* in general, we’ll have coordinates [x y w]
» the resulting 3-D space is a projective space

To convert back, divide by w and drop the last coordinate
« all vectors [ax ay aw] represent the same point
« if w=0, it represents a “point at infinity”

So what does this do to our transformation equations?

Transforms in Homogeneous Coordinates

Scaling
x' s 0 Ollx
yl - g i) (i yl Rotatio.n
x' cosd -sinfd 0|l x
or y'|=|sinf cosd Ofy
p'=Sp 1 0 o 1|1 ,
Translation
or x' 1 0 Ax||x
P'=Rp y'l=l0 1 nylly
1 0 0 1|1
or

p'=Tp




Fundamental Homogeneous Transforms

Translation: p'=Tp
Scaling: p'=Sp
Rotation: P' =Rp

Now we can write all three transforms as matrix multiplications

In general, we’ll be using some sequence of transformations
M,(M,(---M, (v)--))

Composing Transformations

Matrix multiplication is associative (but not commutative)

* can collapse sequences of transformations into single matrix

* but must not reorder any of them

A(B(C(D(v)))) = ABCDv
=(ABCD)v
Can choose to multiply pairs at either end

» add new matrices at beginning — pre-multiply
ABCD =A(B(CD))

» add new matrices at the end — post-multiply
ABCD =(((AB)C)D)




Exercise: Composing Transformations

. V- = -

original R =rotate(60°) S =scale(1.3,0.5) T =trans(0.2, 0.2)

What order of R, S, T -
will produce this figure? 0
(a) TRSv
(b) RSTv
(c) TSRv
(d) RTSv

Writing Transformations in OpenGL

OpenGL maintains a current transformation matrix M
* issue commands to post-multiply matrices into M
» s0, commands are listed in reverse order of application

* glLoadldentity() — set M to identity matrix ™M -1

* glTranslatef(Ax, Ay, Az) — translation M ~ MT)
* glRotatef(0, x, y, z) — rotate about given axis (M ~ MR)
* glScalef(r, s, t) — scale by given factors M ~ MS)

Example: to rotate about an arbitrary point p = [x y]

gl Transl atef (x, y, 0); /1 (3) nmove p back

gl Rotatef (theta, 0, 0, 1); // (2) rotate around z axis
gl Transl atef (-x, -y, 0); /1 (1) move p to origin

Dr awSorret hi ng() ;




A Word of Caution on Notation

We’ve consistently written points as column vectors

» virtually everyone does this 1 Ta bx
« typically represent matrices in row-major order y' = ¢ d|y
[[ab] [cd]

Some in graphics have traditionally used row vectors
* convert by transposing everything: a c
ABv . (ABv)'=vl BTAT [x" y1=[x 9 L) d}
* note that order is reversed as well

» typically represent matrices in column-major order
[[acl [bd]

* OpenGL actually does it this way
* but you'll probably never notice

Next Time: 3-D Transformations

We’ll extend all this to 3-D
The mechanisms are largely the same

But that extra dimension complicates things

And just to remind you:
+ Solid understanding of transforms is essential for a lot material




