
1

Today: 2-D Transformations

Transformations are functions applied to points in space

Provide a mechanism for manipulating geometric models

Transformations are essential pieces of graphics systems
• OpenGL and PostScript, for instance, use them extensively

' ()f=p p

Why Do We Need Transformations?

Makes modeling more convenient
• for example, often easier to generate models around origin

– gluSphere() draws a sphere of radius r about the origin
• can then move them to final position with transformations

Model viewing process via transformations
• projecting 3-D to 2-D will be done this way

Animation
• transformations as a function of time creates motion

2

Linear Algebra in 30 Seconds

We represent points as vectors p = [x y z]
• vectors add according to parallelogram rule
• a linear combination of two vectors is

• set of vectors is linearly independent if none is a linear
combination of the others

• a basis for a space is a linearly independent set of vectors
whose linear combinations include all vectors in the space

• but there are infinitely many possible bases

p

q

p+q

α β+p q

standard basis for 2-D plane: 1 2

1 0
= = 0 1

e e

Linear & Affine Transformations

We’ll be specifically interested in linear transformations

• transformation of shape determined by effect on vertices
• a crucial property that allows for efficient implementation

And the related class of affine transformations

• preserves affine combinations (e.g., they map lines to lines)
• another view: a linear transformation + a translation
• this is a more general class of functions

() () ()f f fα β α β+ = +p q p q

(()) () ()f f fα α+ − = + −p q p p q p

3

Translation

Offset all points by constant amount

Written as more concise vector equation

'

'

x x x

y y y

= + ∆
= + ∆

or

'

'

'

x x x

y y y

∆
= + ∆

= +p p d

Scaling

Scale all points by constant amount

And written as a vector equation

Squash/stretch along x & y axes

'

'

x sx

y ty

=
=

or

'

'

'

x s x

y t y

0
= 0

=p Sp

4

Rotation of Points About Origin

First, write points in polar coordinates

And solve for the new positions

Can write this as a vector equation as well

cos sin

' cos() ' sin()

x y

x y

ρ φ ρ φ
ρ φ θ ρ φ θ

= =
= + = +

θ

φ

x

y

'

'

x

y

' cos sin

' sin cos

x x y

y x y

θ θ
θ θ

= −
= +

or

' cos sin

' sin cos

'

x x

y y

θ θ
θ θ

−
=

=p Rp

The Three Fundamental Transformations

We can represent any affine transformation as a sequence of these 3

Translation is only one not represented as matrix multiplication
• because it’s not a linear transformation
• wouldn’t it be nice if we could come up with a matrix formulation!

Translation:
Scaling:
Rotation:

'

'

'

= +
=
=

p p d

p Sp

p Rp

5

Homogeneous Coordinates

Let’s add an extra dimension to our vectors

• this added dimension is the homogeneous coordinate
• in general, we’ll have coordinates [x y w]
• the resulting 3-D space is a projective space

To convert back, divide by w and drop the last coordinate
• all vectors [αx αy αw] represent the same point
• if w=0, it represents a “point at infinity”

So what does this do to our transformation equations?

position: direction:
x a

x a
y b

y b

 → → 1 0

Transforms in Homogeneous Coordinates

or

'

'

'

x s x

y t y

0 0
 = 0 0
 1 0 0 1 1

=p Sp

Scaling

or

' cos sin

' sin cos

'

x x

y y

θ θ
θ θ

− 0
 = 0
 1 0 0 1 1

=p Rp

Rotation

or

'

'

'

x x x

y y y

1 0 ∆
 = 0 1 ∆
 1 0 0 1 1

=p Tp

Translation

6

Fundamental Homogeneous Transforms

Translation:
Scaling:
Rotation:

'

'

'

=
=
=

p Tp

p Sp

p Rp

Now we can write all three transforms as matrix multiplications

In general, we’ll be using some sequence of transformations

((()))n1 2M M M vL L

Composing Transformations

Matrix multiplication is associative (but not commutative)
• can collapse sequences of transformations into single matrix
• but must not reorder any of them

Can choose to multiply pairs at either end
• add new matrices at beginning — pre-multiply

• add new matrices at the end — post-multiply

(((())))

()

=
=

A B C D v ABCDv

ABCD v

(())=ABCD A B CD

((()))=ABCD AB C D

7

Exercise: Composing Transformations

R = rotate(60°)original S = scale(1.3, 0.5) T = trans(0.2, 0.2)

What order of R, S, T
will produce this figure?

(a) TRSv
(b) RSTv
(c) TSRv
(d) RTSv

Writing Transformations in OpenGL

OpenGL maintains a current transformation matrix M
• issue commands to post-multiply matrices into M
• so, commands are listed in reverse order of application
• glLoadIdentity() — set M to identity matrix (M ← I)
• glTranslatef(∆x, ∆y, ∆z) — translation (M ← MT)
• glRotatef(θ, x, y, z) — rotate about given axis (M ← MR)
• glScalef(r, s, t) — scale by given factors (M ← MS)

Example: to rotate about an arbitrary point p = [x y]

glTranslatef(x, y, 0); // (3) move p back
glRotatef(theta, 0, 0, 1); // (2) rotate around z axis
glTranslatef(-x, -y, 0); // (1) move p to origin
DrawSomething();

8

A Word of Caution on Notation

We’ve consistently written points as column vectors
• virtually everyone does this
• typically represent matrices in row-major order

[[a b] [c d]]

Some in graphics have traditionally used row vectors
• convert by transposing everything:

ABv → (ABv)T=vT BT AT

• note that order is reversed as well
• typically represent matrices in column-major order

[[a c] [b d]]
• OpenGL actually does it this way
• but you’ll probably never notice

'

'

x a b x

y c d y

=

[] []' '
a c

x y x y
b d

=

Next Time: 3-D Transformations

We’ll extend all this to 3-D

The mechanisms are largely the same

But that extra dimension complicates things

And just to remind you:
• Solid understanding of transforms is essential for a lot material

