Today: 3-D Transforms

Last time, we developed 2-D transformations

But we're mainly interested in 3-D graphics

So today, we'll extend these tools to 3-D

An Alternative View of Transformations

Can be thought of as mapping points to new locations

• this is the basis of the presentation from last time

Can also be thought of as a change of coordinate system

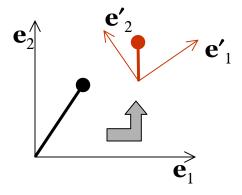
- vectors as specified as a linear combination of basis vectors
- for instance, in 2-D:

 $\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2$

transformed vector is similar combination of transformed basis

$$\mathbf{p'} = p_1 \mathbf{e'_1} + p_2 \mathbf{e'_2}$$

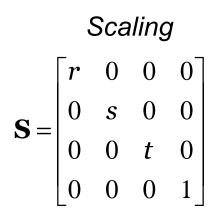
This is frequently a useful approach to understanding transformations



Scaling & Translation in 3-D

Looks pretty much the same as in 2-D

• just add on the z dimension to everything



Translation

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Unfortunately, rotation is not so simple ...

Rotation About Coordinate Axes

Looks pretty similar to 2-D case Specify rotation as 3 angles • one per coordinate axis • these are called Euler angles • fairly widely used	$\mathbf{R}_{x} =$	$\begin{bmatrix} 1 & 0 \\ 0 & \cos \theta \\ 0 & \sin \theta \\ 0 & 0 \end{bmatrix}$		0 $-\sin\theta$ $\cos\theta$ 0	0 0 0 1
 Drawback 1: Result is order dependent suppose we rotate about <i>x</i> then <i>y</i> <i>y</i> rotation is about transformed axis after <i>x</i> rotation is performed this gets confusing 	$\mathbf{R}_{y} =$	$\begin{bmatrix} \cos\theta \\ 0 \\ -\sin\theta \\ 0 \end{bmatrix}$	1	$ \sin \theta \\ 0 \\ \cos \theta \\ 0 $	0 0 0 1
 Drawback 2: Difficult to interpolate for animation want to interpolate angles resulting motion can be <i>weird</i> 	$\mathbf{R}_{z} =$	$\begin{bmatrix} \cos\theta \\ \sin\theta \\ 0 \\ 0 \end{bmatrix}$	$-\sin \frac{1}{2}$		0 0 0 1

Rotation About Coordinate Axes

 Drawback 1: Result is order dependent suppose we rotate about <i>x</i> then <i>y</i> <i>y</i> rotation is about transformed axis after <i>x</i> rotation is performed this gets confusing 	$\mathbf{R}_{x} =$	$\begin{bmatrix} 1 \\ 0 & co \\ 0 & s^2 \\ 0 \end{bmatrix}$	0 os <i>θ</i> in <i>θ</i> 0	$0 \\ -sir \\ cos \\ 0$	η <i>θ</i> θ	0 0 0 1
 Drawback 2: Difficult to interpolate for animation want to interpolate angles resulting motion can be <i>weird</i> Can produce gimbal lock	$\mathbf{R}_y =$	$\begin{bmatrix} \cos \theta \\ 0 \\ -\sin \theta \end{bmatrix}$		sin C cos	η <i>θ</i>) s <i>θ</i>)	0 0 0 1
×	$\mathbf{R}_z =$	$\begin{bmatrix} \cos\theta \\ \sin\theta \\ 0 \\ 0 \end{bmatrix}$	–si co ($\sin \theta$ $s \theta$ () ()	0 0 1 0	0 0 0 1

Some Mathematical Definitions

The dual matrix of a vector u

$$\mathbf{u}^* = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

• can write vector cross product $\mathbf{u} \times \mathbf{v}$ as matrix multiply $\mathbf{u}^* \mathbf{v}$

The outer product of a vector **u** (with itself)

$$\mathbf{u}\mathbf{u}^{\mathsf{T}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{bmatrix}$$

Rotation About Arbitrary Axis

Let's suppose we have a unit direction vector

$$\mathbf{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ where } x^2 + y^2 + z^2 = 1$$

We can derive a rotation by a given angle about this axis

$$\mathbf{R}(\theta, \mathbf{u}) = \mathbf{u}\mathbf{u}^{\mathsf{T}} + \cos\theta(\mathbf{I} - \mathbf{u}\mathbf{u}^{\mathsf{T}}) + (\sin\theta)\mathbf{u}^{*}$$

This is the approach used by OpenGL — glRotatef(θ , x, y, z) Has many of the same interpolation problems as Euler angles

Quaternions

These are essentially generalized complex numbers

- a scalar part + a vector part 1 real and 3 imaginary parts $q = (s, \mathbf{v})$ $= s + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ Conjugate: $\overline{q} = (s, -\mathbf{v})$
- basic quaternion operation is multiplication

$$qq' = (ss' - \mathbf{v} \cdot \mathbf{v}', \mathbf{v} \times \mathbf{v}' + s\mathbf{v}' + s'\mathbf{v}) \qquad q^{-1} = \frac{q}{\|q\|}$$

We're interested in the class of unit quaternions

$$\left\|q\right\|^2 = q\overline{q} = s^2 + \left\|\mathbf{v}\right\|^2 = 1$$

- forms a unit sphere in 4-D sphere
- can be used to represent the set of rotations

Rotations With Quaternions

Given a point \boldsymbol{p} and an axis \boldsymbol{u}

- construct the quaternion $q = (\cos\theta, \sin\theta \mathbf{u})$
- compute the product $q(0,\mathbf{p})q^{-1}$
- the resulting point \mathbf{p}' is \mathbf{p} rotated by 2θ about \mathbf{u}

Quaternion can also be converted to equivalent rotation matrix

$$q = (w, \begin{bmatrix} x & y & z \end{bmatrix})$$

$$\mathbf{M}_{q} = \begin{bmatrix} 1 - 2y^{2} - 2z^{2} & 2xy - 2wz & 2xz + 2wy & 0 \\ 2xy + 2wz & 1 - 2x^{2} - 2z^{2} & 2yz - 2wx & 0 \\ 2xz - 2wy & 2yz + 2wx & 1 - 2x^{2} - 2y^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Looking At Quaternions

Quaternions have a big advantage over Euler angles

- can interpolate between rotations much more nicely
- using scheme called Spherical Linear Interpolation (SLERP)
 walk along great circle connecting two points on 4-D sphere

But interpolating multiple rotations is still ugly

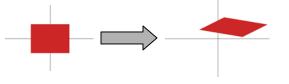
Quaternions have some other nice advantages too

- more compact than rotation matrices
- can compose rotations by quaternion multiplication
- but they can be easily converted to matrices if needed

Transformation of Normal Vectors

Affine transformations map parallel lines to parallel lines

• but the same does not hold for perpendicular lines



Transform M will not map normal vectors to normal vectors

- first guess would be to map normals as $n \to Mn$
- after transform, may or may not be perpendicular to surface

Normal vectors are defined by surface tangent planes

• so let's consider how planes are transformed

Transformation of Normal Vectors

A plane in 3-D space is described by the homogeneous vector

 $\mathbf{n} = (a,b,c,d)$ where ax + by + cz + d = 0 is the plane equation

- thus any point ${\bf v}$ on the plane satisfies the equation ${\bf n}^{^{\mathsf{T}}}{\bf v}\,{=}\,0$
- For any 4x4 matrix whose inverse exists, this is equivalent to $\mathbf{n}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{M}\mathbf{v}=\mathbf{0}$
 - thus the transformed point $\mathbf{M}\mathbf{v}$ lies on the plane $n^{\mathsf{T}}\mathbf{M}^{\scriptscriptstyle{-1}}$
 - it's plane vector is $(\mathbf{n}^\mathsf{T}\mathbf{M}^{-1})^\mathsf{T}$ or $(\mathbf{M}^{-1})^\mathsf{T}\mathbf{n}$

This gives us the transformation rule for normal vectors

 $\mathbf{n} \rightarrow (\mathbf{M}^{-1})^{\mathsf{T}} \mathbf{n}$

Transformation of Normal Vectors

Must in general compute actual local plane

 $\mathbf{n} = (a,b,c,d)$ where ax + by + cz + d = 0 is the plane equation

however, there are some simpler cases

Simplified case #1: Affine Transformations

- map parallel planes to parallel planes
- thus, can pick any value of d might as well be 0

Simplified case #2: Orthogonal Transformations

- in this case (e.g., rotation) $\mathbf{M}^{-1} = \mathbf{M}^{\mathsf{T}}$
- thus the normal transformation rule becomes $n \to Mn$

Beyond Linear Transformations

There are of course more general kinds of transformations

- in general, any function mapping points to new locations
- for instance, might want to twist an object
- the downside: must transform all points individually

Free-form deformations common in production software

- define a 3-D grid of control points
- use grid points to control Bézier cubic splines within cells
- obviously much more complex than single matrices

For us, affine transforms are (generally) good enough

Next Time: Polygonal Modeling