
Today: 3-D Transforms

Last time, we developed 2-D transformations

But we’re mainly interested in 3-D graphics

So today, we’ll extend these tools to 3-D



An Alternative View of Transformations

Can be thought of as mapping points to new locations
• this is the basis of the presentation from last time

Can also be thought of as a change of coordinate system
• vectors as specified as a linear combination of basis vectors
• for instance, in 2-D:

• transformed vector is similar combination of transformed basis

This is frequently a useful approach
to understanding transformations
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Scaling & Translation in 3-D

Looks pretty much the same as in 2-D
• just add on the z dimension to everything

Unfortunately, rotation is not so simple …
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Rotation About Coordinate Axes

Looks pretty similar to 2-D case

Specify rotation as 3 angles
• one per coordinate axis
• these are called Euler angles
• fairly widely used

Drawback 1: Result is order dependent
• suppose we rotate about x then y
• y rotation is about transformed axis after 
x rotation is performed

• this gets confusing

Drawback 2: Difficult to interpolate
• for animation want to interpolate angles
• resulting motion can be weird
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Rotation About Coordinate Axes

Drawback 1: Result is order dependent
• suppose we rotate about x then y
• y rotation is about transformed axis after 
x rotation is performed

• this gets confusing

Drawback 2: Difficult to interpolate
• for animation want to interpolate angles
• resulting motion can be weird

Can produce gimbal lock
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Some Mathematical Definitions

The dual matrix of a vector u

• can write vector cross product u×v as matrix multiply u∗ v

The outer product of a vector u (with itself)
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Rotation About Arbitrary Axis

Let’s suppose we have a unit direction vector

We can derive a rotation by a given angle about this axis

This is the approach used by OpenGL — glRotatef(θ, x, y, z)

Has many of the same interpolation problems as Euler angles

  where 
x

y x y z

z

2 2 2

 
 = + + =1 
  

u

T T *( , ) cos ( ) (sin )θ θ θ= + − +R u uu I uu u



Quaternions

These are essentially generalized complex numbers
• a scalar part + a vector part — 1 real and 3 imaginary parts

• basic quaternion operation is multiplication

We’re interested in the class of unit quaternions

• forms a unit sphere in 4-D sphere
• can be used to represent the set of rotations
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Rotations With Quaternions

Given a point p and an axis u
• construct the quaternion
• compute the product
• the resulting point p′ is p rotated by 2θ about u

Quaternion can also be converted to equivalent rotation matrix
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Looking At Quaternions

Quaternions have a big advantage over Euler angles
• can interpolate between rotations much more nicely
• using scheme called Spherical Linear Interpolation (SLERP)

– walk along great circle connecting two points on 4-D sphere

But interpolating multiple rotations is still ugly

Quaternions have some other nice advantages too
• more compact than rotation matrices
• can compose rotations by quaternion multiplication
• but they can be easily converted to matrices if needed



Transformation of Normal Vectors

Affine transformations map parallel lines to parallel lines
• but the same does not hold for perpendicular lines

Transform M will not map normal vectors to normal vectors
• first guess would be to map normals as n → Mn
• after transform, may or may not be perpendicular to surface

Normal vectors are defined by surface tangent planes
• so let’s consider how planes are transformed



Transformation of Normal Vectors

A plane in 3-D space is described by the homogeneous vector

• thus any point v on the plane satisfies the equation

For any 4x4 matrix whose inverse exists, this is equivalent to

• thus the transformed point Mv lies on the plane nTM-1

• it’s plane vector is (nTM-1)T or (M-1)Tn

This gives us the transformation rule for normal vectors
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Transformation of Normal Vectors

Must in general compute actual local plane

• however, there are some simpler cases

Simplified case #1: Affine Transformations
• map parallel planes to parallel planes
• thus, can pick any value of d— might as well be 0

Simplified case #2: Orthogonal Transformations
• in this case (e.g., rotation) 
• thus the normal transformation rule becomes
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Beyond Linear Transformations

There are of course more general kinds of transformations
• in general, any function mapping points to new locations
• for instance, might want to twist an object
• the downside: must transform all points individually

Free-form deformations common in production software
• define a 3-D grid of control points
• use grid points to control Bézier cubic splines within cells
• obviously much more complex than single matrices

For us, affine transforms are (generally) good enough



Next Time: Polygonal Modeling


