Today: 3-D Transforms

Last time, we developed 2-D transformations

But we’re mainly interested in 3-D graphics

So today, we’ll extend these tools to 3-D

An Alternative View of Transformations

Can be thought of as mapping points to new locations
* this is the basis of the presentation from last time

Can also be thought of as a change of coordinate system
* vectors as specified as a linear combination of basis vectors
« for instance, in 2-D:
P=pe€, +tpe,
* transformed vector is similar combination of transformed basis

|]]
P =p€e ;tp.e, '

e
ez ZW e']_
This is frequently a useful approach
to understanding transformations ﬁ

Scaling & Translation in 3-D

Looks pretty much the same as in 2-D Scaling
* just add on the z dimension to everything _

P O O O

OO O «w O

o O O =
o ™ O

Translation

0 0 Ax

Unfortunately, rotation is not so simple ...

o O O B+

1 0 Ny
01 ;v
00 1

Rotation About Coordinate Axes

Looks pretty similar to 2-D case

Specify rotation as 3 angles
* one per coordinate axis
 these are called Euler angles
» fairly widely used

Drawback 1: Result is order dependent
* suppose we rotate about x then y

« y rotation is about transformed axis after
x rotation is performed

* this gets confusing

Drawback 2: Difficult to interpolate
« for animation want to interpolate angles
* resulting motion can be weird

R

y

1 O

0

O cos@d -siné

O sind cosd

0O O

cosd
0
—siné
0

[cosd

siné
0
0

0

0O siné
1 0
O coséd
0

|HOOO|

IHOOOI

Rotation About Coordinate Axes

Drawback 1: Result is order dependent
* suppose we rotate about x then y R

« y rotation is about transformed axis after ““x
x rotation is performed

* this gets confusing

Drawback 2: Difficult to interpolate
« for animation want to interpolate angles
* resulting motion can be weird R

y

Can produce gimbal lock

1 O 0
O cosf@ -sinéf
O sinfd coséd
0O O 0
cosd 0 sind
0 1 0
—sind 0 coséd
0 0O O
(cosd -sind O
sind cosfd O
0 0 1
0 0 0

|HOOO|

IHOOOI

i
0
0
1_

Some Mathematical Definitions

The dual matrix of a vector u

0 -z y
u=-lz 0 -x
-y x 0

« can write vector cross product uxv as matrix multiply uv

The outer product of a vector u (with itself)

X x* xy xz

uwa' =|y(x y z]=|xy ¥ yz
z Xz Yz z°

Rotation About Arbitrary Axis

Let’s suppose we have a unit direction vector

u=|y| wherex’+y*+z°=1

We can derive a rotation by a given angle about this axis
R(6,u)=uu' +cosHI —uu') +(sin Hu’
This is the approach used by OpenGL — glRotatef(g x, y, z)

Has many of the same interpolation problems as Euler angles

Quaternions

These are essentially generalized complex numbers
* a scalar part + a vector part — 1 real and 3 imaginary parts
q=(s,v)
=s+xi +yj +zk
* basic quaternion operation is multiplication
qq =(ss'-vI¥',vxv'+sv'+s'v) q

Conjugate: g =(s,—v)

1 :i
lq]
We’re interested in the class of unit quaternions
2 _ = _ 2 2 _
lal” =49 =s* +|v|" =1
 forms a unit sphere in 4-D sphere
 can be used to represent the set of rotations

Rotations With Quaternions

Given a point p and an axis u
« construct the quaternion g =(cosé, sinfu)
« compute the product q(0,p)g™*
* the resulting point p’ is p rotated by 26 about u

Quaternion can also be converted to equivalent rotation matrix
qg=(w,[x y z])

1-22 -22 Xy -2z 2z +y

2xy +2wz 1-X° -2° 2z -wx

Tl 2xz-2wy 2z +Avx 1-2% -P°
0 0 0 1

e O e |
N — N

Looking At Quaternions

Quaternions have a big advantage over Euler angles
* can interpolate between rotations much more nicely
* using scheme called Spherical Linear Interpolation (SLERP)
—walk along great circle connecting two points on 4-D sphere

But interpolating multiple rotations is still ugly

Quaternions have some other nice advantages too
« more compact than rotation matrices
« can compose rotations by quaternion multiplication
* but they can be easily converted to matrices if needed

Transformation of Normal Vectors

Affine transformations map parallel lines to parallel lines
 but the same does not hold for perpendicular lines

=

Transform M will not map normal vectors to normal vectors
« first guess would be to map normals as n - Mn
e after transform, may or may not be perpendicular to surface

Normal vectors are defined by surface tangent planes
* 50 let’s consider how planes are transformed

Transformation of Normal Vectors

A plane in 3-D space is described by the homogeneous vector
n =(a,b,c,d) where ax +by +cz +d = 0is the plane equation
* thus any point v on the plane satisfies the equation
n'v=0
For any 4x4 matrix whose inverse exists, this is equivalent to
n'M Mv =0
« thus the transformed point Mv lies on the plane nTM!
* it's plane vector is (m™™1)" or (M1)'n

This gives us the transformation rule for normal vectors

n-MYHn

Transformation of Normal Vectors

Must in general compute actual local plane
n =(a,b,c,d) where ax +by +cz +d = 0is the plane equation

* however, there are some simpler cases

Simplified case #1: Affine Transformations
* map parallel planes to parallel planes
» thus, can pick any value of d — might as well be 0

Simplified case #2: Orthogonal Transformations
* in this case (e.g., rotation) M™* =M"
* thus the normal transformation rule becomesn - Mn

Beyond Linear Transformations

There are of course more general kinds of transformations
* in general, any function mapping points to new locations
« for instance, might want to twist an object
 the downside: must transform all points individually

Free-form deformations common in production software
« define a 3-D grid of control points
* use grid points to control Bézier cubic splines within cells
* obviously much more complex than single matrices

For us, affine transforms are (generally) good enough

Next Time: Polygonal Modeling

