
Today: 3-D Transforms

Last time, we developed 2-D transformations

But we’re mainly interested in 3-D graphics

So today, we’ll extend these tools to 3-D

An Alternative View of Transformations

Can be thought of as mapping points to new locations
• this is the basis of the presentation from last time

Can also be thought of as a change of coordinate system
• vectors as specified as a linear combination of basis vectors
• for instance, in 2-D:

• transformed vector is similar combination of transformed basis

This is frequently a useful approach
to understanding transformations

p p1 1 2 2= +p e e

e1

e2

' ' 'p p1 1 2 2= +p e e
e′1

e′2

Scaling & Translation in 3-D

Looks pretty much the same as in 2-D
• just add on the z dimension to everything

Unfortunately, rotation is not so simple …

r

s

t

0 0 0
 0 0 0 =
 0 0 0
 0 0 0 1

S

x

y

z

1 0 0 ∆
 0 1 0 ∆ =
 0 0 1 ∆
 0 0 0 1

T

Scaling

Translation

Rotation About Coordinate Axes

Looks pretty similar to 2-D case

Specify rotation as 3 angles
• one per coordinate axis
• these are called Euler angles
• fairly widely used

Drawback 1: Result is order dependent
• suppose we rotate about x then y
• y rotation is about transformed axis after
x rotation is performed

• this gets confusing

Drawback 2: Difficult to interpolate
• for animation want to interpolate angles
• resulting motion can be weird

cos sin

sin cosx

θ θ
θ θ

1 0 0 0
 0 − 0 =
 0 0
 0 0 0 1

R

cos sin

sin cos
z

θ θ
θ θ

− 0 0
 0 0 =
 0 0 1 0
 0 0 0 1

R

cos sin

sin cosy

θ θ

θ θ

0 0
 0 1 0 0 =
 − 0 0
 0 0 0 1

R

Rotation About Coordinate Axes

Drawback 1: Result is order dependent
• suppose we rotate about x then y
• y rotation is about transformed axis after
x rotation is performed

• this gets confusing

Drawback 2: Difficult to interpolate
• for animation want to interpolate angles
• resulting motion can be weird

Can produce gimbal lock

cos sin

sin cosx

θ θ
θ θ

1 0 0 0
 0 − 0 =
 0 0
 0 0 0 1

R

cos sin

sin cos
z

θ θ
θ θ

− 0 0
 0 0 =
 0 0 1 0
 0 0 0 1

R

cos sin

sin cosy

θ θ

θ θ

0 0
 0 1 0 0 =
 − 0 0
 0 0 0 1

R

Some Mathematical Definitions

The dual matrix of a vector u

• can write vector cross product u×v as matrix multiply u∗ v

The outer product of a vector u (with itself)

*

z y

z x

y x

0 −
 = 0 −
 − 0

u

[]T

x x xy xz

y x y z xy y yz

z xz yz z

2

2

2

 = =

uu

Rotation About Arbitrary Axis

Let’s suppose we have a unit direction vector

We can derive a rotation by a given angle about this axis

This is the approach used by OpenGL — glRotatef(θ, x, y, z)

Has many of the same interpolation problems as Euler angles

 where
x

y x y z

z

2 2 2

 = + + =1

u

T T *(,) cos () (sin)θ θ θ= + − +R u uu I uu u

Quaternions

These are essentially generalized complex numbers
• a scalar part + a vector part — 1 real and 3 imaginary parts

• basic quaternion operation is multiplication

We’re interested in the class of unit quaternions

• forms a unit sphere in 4-D sphere
• can be used to represent the set of rotations

(,)q s

s x y z

=
= + + +

v

i j k
Conjugate: (,)q s= −v

q qq s
2 22= = + =1v

q
q

q
−1 =' (' ', ' ' ')qq ss s s= − ⋅ × + +v v v v v v

Rotations With Quaternions

Given a point p and an axis u
• construct the quaternion
• compute the product
• the resulting point p′ is p rotated by 2θ about u

Quaternion can also be converted to equivalent rotation matrix

(cos , sin)q θ θ= u
(,)q q−10 p

q

y z xy wz xz wy

xy wz x z yz wx

xz wy yz wx x y

2 2

2 2

2 2

 1− 2 − 2 2 − 2 2 + 2 0
 2 + 2 1− 2 − 2 2 − 2 0 =
 2 − 2 2 + 2 1− 2 − 2 0

0 0 0 1

M

[](,)q w x y z=

Looking At Quaternions

Quaternions have a big advantage over Euler angles
• can interpolate between rotations much more nicely
• using scheme called Spherical Linear Interpolation (SLERP)

– walk along great circle connecting two points on 4-D sphere

But interpolating multiple rotations is still ugly

Quaternions have some other nice advantages too
• more compact than rotation matrices
• can compose rotations by quaternion multiplication
• but they can be easily converted to matrices if needed

Transformation of Normal Vectors

Affine transformations map parallel lines to parallel lines
• but the same does not hold for perpendicular lines

Transform M will not map normal vectors to normal vectors
• first guess would be to map normals as n → Mn
• after transform, may or may not be perpendicular to surface

Normal vectors are defined by surface tangent planes
• so let’s consider how planes are transformed

Transformation of Normal Vectors

A plane in 3-D space is described by the homogeneous vector

• thus any point v on the plane satisfies the equation

For any 4x4 matrix whose inverse exists, this is equivalent to

• thus the transformed point Mv lies on the plane nTM-1

• it’s plane vector is (nTM-1)T or (M-1)Tn

This gives us the transformation rule for normal vectors

where is the plane equation(, , ,)a b c d ax by cz d= + + + = 0n

T = 0n v

T −1 = 0n M Mv

T()−1→n M n

Transformation of Normal Vectors

Must in general compute actual local plane

• however, there are some simpler cases

Simplified case #1: Affine Transformations
• map parallel planes to parallel planes
• thus, can pick any value of d— might as well be 0

Simplified case #2: Orthogonal Transformations
• in this case (e.g., rotation)
• thus the normal transformation rule becomes

where is the plane equation(, , ,)a b c d ax by cz d= + + + = 0n

T−1 =M M
→n Mn

Beyond Linear Transformations

There are of course more general kinds of transformations
• in general, any function mapping points to new locations
• for instance, might want to twist an object
• the downside: must transform all points individually

Free-form deformations common in production software
• define a 3-D grid of control points
• use grid points to control Bézier cubic splines within cells
• obviously much more complex than single matrices

For us, affine transforms are (generally) good enough

Next Time: Polygonal Modeling

