
Today: Illumination & Shading

(1 million triangles drawn with 1 color per triangle)

Determining an Object’s Appearance

Ultimately, we’re interested in modeling light transport in scene
• Light is emitted from light sources and interacts with surfaces
• on impact with an object, some is reflected and some is absorbed
• distribution of reflected light determines “finish” (matte, glossy, …)
• composition of light arriving at eye determines what we see

Let’s focus on the local interaction of light with single surface point

Incident light

Some light is absorbed

Reflected light
Some reaches eye

Modeling Light Sources

In general, light sources have a very complex structure
• incandescent light bulbs, the sun, CRT monitors, …

To simplify things, we’ll focus on point light sources for now
• light source is a single infinitesimal point
• emits light equally in all directions (isotropic illumination)
• outgoing light is set of rays originating at light point

Creating lights in OpenGL
• glEnable(GL_LIGHTING) — turn on lighting of objects
• glEnable(GL_LIGHT0) — turn on specific light
• glLight(…) — specify position, emitted light intensity, …

Basic Local Illumination Model

We’re only interested in light that finally arrives at view point
• a function of the light & viewing positions
• and local surface reflectance

Characterize light using RGB triples
• can operate on each channel separately

Given a point, compute intensity of reflected light

L

n

v

Diffuse Reflection

This is the simplest kind of reflection
• also called Lambertian reflection
• models dull, matte surfaces — materials like chalk

Ideal diffuse reflection
• scatters incoming light equally in all directions
• identical appearance from all viewing directions
• reflected intensity depends only on direction of light source

Light is reflected according to Lambert’s Law

Lambert’s Law for Diffuse Reflection

L

n
θ

resulting intensity (diffuse)
light source intensity
(diffuse) surface reflectance coefficient

angle between normal & light direction

:

:

:

[,]

:

d

L

d

d

I

I

k

k

θ
∈ 0 1

max(cos ,)

max(,)
d L d

L d

I I k

I k

θ= 0
= ⋅ 0n L

Purely diffuse object

Specular Reflection

Diffuse reflection is nice, but many surfaces are shiny
• their appearance changes as the viewpoint moves
• they have glossy specular highlights (or specularities)
• because they reflect light coherently, in a preferred direction

A mirror is a perfect specular reflector
• incoming ray reflected about normal direction
• nothing reflected in any other direction

Most surfaces are imperfect specular reflectors
• reflect rays in cone about perfect reflection direction

θ θ

Phong Specular Illumination Model

One particular specular reflection model
• quite common in practice
• it is purely empirical
• there’s no physical basis for it

L

n
θ

v

r

φ
resulting intensity (specular)
light source intensity
(specular) surface reflectance coefficient

angle between viewing & reflection direction
"shininess" factor

:

:

:

[,]

:

:

s

L

s

s

I

I

k

k

n

φ
∈ 0 1

max(cos ,)

max(,)

n
s L s

n
L s

I I k

I k

φ= 0

= ⋅ 0r v

Examples of Phong Specular Model

Diffuse only
Diffuse + Specular

(shininess 5)
Diffuse + Specular

(shininess 50)

The Ambient Glow

So far, areas not directly illuminated by any light appear black
• this tends to look rather unnatural
• in the real world, there’s lots of ambient light

To compensate, we invent new light source
• assume there is a constant ambient “glow”
• this ambient glow is purely fictitious

Just add in another term to our illumination equation

d s a aI I I I k= + +

ambient light intensity
(ambient) surface reflectance coefficient
:

:
a

a

I

k

Our Three Basic Components of Illumination

Diffuse Specular Ambient
dI I= sI I= a aI I k=

Combined for the Final Result

d s a aI I I I k= + +

Recall How to Color Polygons

Hard-coded colors on surface of model
• maybe from pre-computed illumination (e.g., radiosity)
• explicitly specify 1 color per face/vertex

Flat Shaded:

glBegin(GL_TRIANGLES);
for(int j=0; j<n; j++)
{
glColor3fv(c);
glVertex3fv(v1);
glVertex3fv(v2);
glVertex3fv(v3);

}
glEnd();

Smooth Shaded:

glBegin(GL_TRIANGLES);
for(int j=0; j<n; j++)
{
glColor3fv(c1);
glVertex3fv(v1);
glColor3fv(c2);
glVertex3fv(v2);
glColor3fv(c3);
glVertex3fv(v3);

}
glEnd();

Drawing Polygons with Lighting

We usually want OpenGL to infer colors via illumination model
• specify 1 normal per face/vertex

Flat Shaded:

glBegin(GL_TRIANGLES);
for(int j=0; j<n; j++)
{
glNormal3fv(n);
glVertex3fv(v1);
glVertex3fv(v2);
glVertex3fv(v3);

}
glEnd();

Smooth Shaded:

glBegin(GL_TRIANGLES);
for(int j=0; j<n; j++)
{
glNormal3fv(n1);
glVertex3fv(v1);
glNormal3fv(n2);
glVertex3fv(v2);
glNormal3fv(n3);
glVertex3fv(v3);

}
glEnd();

Shading Polygons: Flat Shading

Illumination equations are evaluated at surface locations
• so where do we apply them?

We could just do it once per polygon
• fill every pixel covered by polygon

with the resulting color

OpenGL — glShadeModel(GL_FLAT)

Shading Polygons: Gouraud Shading

Alternatively, we could evaluate at every vertex
• linearly interpolate color along edges
• linearly interpolate along scan lines

– interpolation in screen space
varies with viewpoint

Misses details that don’t fall on vertex
• specular highlights, for instance

OpenGL — glShadeModel(GL_SMOOTH)

Shading Polygons: Phong Shading

Don’t just interpolate colors over polygons

Interpolate surface normal over polygon
• evaluate illumination equation at each pixel

OpenGL — not supported

Defining Materials in OpenGL

Just like everything else, there is a current material
• specifies the reflectances of the objects being drawn
• reflectances (e.g., kd) are RGB triples

Set current values with glMaterial(…)

GLfloat tan[] = {0.8, 0.7, 0.3, 1.0};
GLfloat tan2[] = {0.4, 0.35, 0.15, 1.0};

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, tan);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, tan);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, tan2);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50.0);

Defining Lights in OpenGL

A fixed set of lights are available (at least 8)
• turn them on with glEnable(GL_LIGHTx)
• set their values with glLight(…)

GLfloat white[] = {1.0, 1.0, 1.0, 1.0}
GLfloat p[] = {-2.0, -3.0, 10.0, 1.0}; // w=0 for directional light

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

glLightfv(GL_LIGHT0, GL_POSITION, p);
glLightfv(GL_LIGHT0, GL_DIFFUSE, white);
glLightfv(GL_LIGHT0, GL_SPECULAR, white); // can be different

glEnable(GL_NORMALIZE); // guarantee unit normals

Summarizing the Shading Model

We describe local appearance with illumination equations
• consists of a sum of set of components — light is additive
• treat each wavelength independently
• currently: diffuse, specular, and ambient terms

Must shade every pixel covered by polygon
• flat shading: constant color
• Gouraud shading: interpolate corner colors
• Phong shading: interpolate corner normals

max(cos ,) max(cos ,)nL d L s a aI I k I k I kθ φ= 0 + 0 +

L

n
θ

v

r

φ

What Have We Ignored?

Some local phenomena
• shadows — every point is illuminated by every light source
• attenuation — intensity falls off with square of distance to light
• transparent objects — light can be transmitted through surface

Global illumination
• reflections of objects in other objects
• indirect diffuse light — ambient term is just a hack

Realistic surface detail
• can make an orange sphere
• but it doesn’t have the texture of the real fruit

Realistic light sources

Next Time: Viewing Models & Perspective

We’ve developed these tools for transforming geometry
• fundamental rotate, translate, scale transforms
• compose them by matrix multiplication

Now we’ll apply them to our next big problem
• how do we project 3-D to 2-D?

