Today: lllumination & Shading

(1 million triangles drawn with 1 color per triangle)

Determining an Object’s Appearance

Ultimately, we’re interested in modeling light transport in scene
* Light is emitted from light sources and interacts with surfaces
» on impact with an object, some is reflected and some is absorbed
« distribution of reflected light determines “finish” (matte, glossy, ...)
« composition of light arriving at eye determines what we see

Let’s focus on the local interaction of light with single surface point

2\ Incident light
M Some reaches eye

Reflected light

Some light is absorbed

Modeling Light Sources

In general, light sources have a very complex structure
 incandescent light bulbs, the sun, CRT monitors, ...

To simplify things, we’ll focus on point light sources for now
* light source is a single infinitesimal point
« emits light equally in all directions (isotropic illumination)
« outgoing light is set of rays originating at light point

Creating lights in OpenGL
 glEnable(GL_LIGHTING) — turn on lighting of objects
 glEnable(GL_LIGHTO) — turn on specific light
* glLight(...) — specify position, emitted light intensity, ...

Basic Local lllumination Model

We’'re only interested in light that finally arrives at view point
« a function of the light & viewing positions
 and local surface reflectance

O\\
"
Characterize light using RGB triples v

 can operate on each channel separately

Given a point, compute intensity of reflected light

Diffuse Reflection

This is the simplest kind of reflection
 also called Lambertian reflection
 models dull, matte surfaces — materials like chalk

Ideal diffuse reflection
» scatters incoming light equally in all directions
« identical appearance from all viewing directions
* reflected intensity depends only on direction of light source

Light is reflected according to Lambert’s Law

Lambert’s Law for Diffuse Reflection

Purely diffuse object O

I, =1k, max(cosd,0) n
=1, k;, max(n [L,0) M

I, : resulting intensity (diffuse)

I, : light source intensity

k, : (diffuse) surface reflectance coefficient
k,001]

@: angle between normal & light direction

Specular Reflection

Diffuse reflection is nice, but many surfaces are shiny
* their appearance changes as the viewpoint moves
 they have glossy specular highlights (or specularities)
» because they reflect light coherently, in a preferred direction

O,

A mirror is a perfect specular reflector
 incoming ray reflected about normal direction
* nothing reflected in any other direction

Most surfaces are imperfect specular reflectors
« reflect rays in cone about perfect reflection direction

Phong Specular lllumination Model

I. =1,k max(cos ¢,0)"
=1, k, max(r ¥,0)"

One particular specular reflection model
» quite common in practice
* it is purely empirical
* there’s no physical basis for it

: resulting intensity (specular)
: light source intensity
: (specular) surface reflectance coefficient

k, 0011
angle between viewing & reflection direction
"shininess" factor

Examples of Phong Specular Model

_ Diffuse + Specular Diffuse + Specular
Diffuse only (shininess 5) (shininess 50)

The Ambient Glow

So far, areas not directly illuminated by any light appear black
* this tends to look rather unnatural
* in the real world, there’s lots of ambient light

To compensate, we invent new light source
« assume there is a constant ambient “glow”
* this ambient glow is purely fictitious

Just add in another term to our illumination equation

I=1,+I +1Ik,

I : ambient light intensity

a

k : (ambient) surface reflectance coefficient

a

Our Three Basic Components of lllumination

Diffuse Specular Ambient
I=1, I=1 I=1k,

Combined for the Final Result

I=1,+1_+1k,

Recall How to Color Polygons

Hard-coded colors on surface of model
* maybe from pre-computed illumination (e.g., radiosity)
« explicitly specify 1 color per face/vertex

Flat Shaded:

gl Begi n(G-._TRI ANGLES) ;
for(int j=0; j<n; |++)
{
gl Col or 3fv(c);
gl Vertex3fv(vl);
gl Vertex3fv(v2);
gl Vertex3fv(v3);

}
gl End() ;

Smooth Shaded:

gl Begi n(G-._TRI ANGLES) ;

for(int j=0; j<n; |++)
{

gl Col or3fv(cl);

gl Vertex3fv(vl);

gl Col or 3fv(c2);

gl Vertex3fv(v2);

gl Col or 3fv(c3);

gl Vertex3fv(v3);

}
gl End() ;

Drawing Polygons with Lighting

We usually want OpenGL to infer colors via illumination model

« specify 1 normal per face/vertex

Flat Shaded:

gl Begi n(G-._TRI ANGLES) ;
for(int j=0; j<n; |++)
{
gl Nor mal 3fv(n);
gl Vertex3fv(vl);
gl Vertex3fv(v2);
gl Vertex3fv(v3);

}
gl End() ;

Smooth Shaded:

gl Begi n(G-._TRI ANGLES) ;

for(int j=0; j<n; |++)
{

gl Nor mal 3f v(nl);

gl Vertex3fv(vl);

gl Nor mal 3f v(n2);

gl Vertex3fv(v2);

gl Nor mal 3f v(n3);

gl Vertex3fv(v3);

}
gl End() ;

Shading Polygons: Flat Shading

lllumination equations are evaluated at surface locations
* sO where do we apply them?

We could just do it once per polygon

« fill every pixel covered by polygon
with the resulting color

OpenGL — glShadeModel(GL_FLAT)

Shading Polygons: Gouraud Shading

Alternatively, we could evaluate at every vertex
* linearly interpolate color along edges
* linearly interpolate along scan lines

— interpolation in screen space
varies with viewpoint

Misses details that don’t fall on vertex
« specular highlights, for instance

OpenGL — glShadeModel(GL_SMOOTH)

Shading Polygons: Phong Shading

Don’t just interpolate colors over polygons

Interpolate surface normal over polygon
« evaluate illumination equation at each pixel

- ‘b\\

.

OpenGL — not supported

Defining Materials in OpenGL

Just like everything else, there is a current material
» specifies the reflectances of the objects being drawn
- reflectances (e.g., k;) are RGB triples

Set current values with glMaterial(...)

Gfloat tan[] = {0.8, 0.7, 0.3, 1.0};
Gfloat tan2[] = {0.4, 0.35, 0.15, 1.0};

gl Materi al f v(G._FRONT_AND BACK, G._AMBI ENT, tan);
gl Materi al fv(G._FRONT_AND BACK, G. DI FFUSE, tan);
gl Materi al f v(G_FRONT_AND BACK, G. SPECULAR, tan2);
gl Materi al f (G._FRONT_AND BACK, G._SHI NI NESS, 50.0);

Defining Lights in OpenGL

A fixed set of lights are available (at least 8)
* turn them on with glEnable(GL_LIGHTX)
» set their values with glLight(...)

G.float white]

] ={1.0, 1.0, 1.0, 1.0}
G.float p[] = {-2.0,

-3.0, 10.0, 1.0}; /w=0fordirectional light

gl Enabl e(G__LI GHTI NG) ;
gl Enabl e(GL_LI GHTO) ;
gl Li ght Model i (G__LI GHT_MODEL_TWO SI DE, G._TRUE) ;

gl Lightfv(G_LIGHTO, G._POSITION, p);
gl Lightfv(G._LI GHTO, G._DI FFUSE, white);
gl Lightfv(G_LI GHTO, G._SPECULAR, white); //canbe different

gl Enabl e(GL_NORMALI ZE) ; //guarantee unit normals

Summarizing the Shading Model

We describe local appearance with illumination equations
» consists of a sum of set of components — light is additive
- treat each wavelength independently
« currently: diffuse, specular, and ambient terms

I =1, k, max(cos8,0) +I1,k, max(cosg, 0" +I k,

Q.
\ n
Must shade every pixel covered by polygon N | o
« flat shading: constant color v

« Gouraud shading: interpolate corner colors
* Phong shading: interpolate corner normals

What Have We Ignored?

Some local phenomena
» shadows — every point is illuminated by every light source
« attenuation — intensity falls off with square of distance to light
* transparent objects — light can be transmitted through surface

Global illumination
» reflections of objects in other objects
« indirect diffuse light — ambient term is just a hack

Realistic surface detail
* can make an orange sphere
* but it doesn’t have the texture of the real fruit

Realistic light sources

Next Time: Viewing Models & Perspective

We’ve developed these tools for transforming geometry
« fundamental rotate, translate, scale transforms
« compose them by matrix multiplication

Now we’ll apply them to our next big problem
* how do we project 3-D to 2-D?

