
Topic #1: Rasterization (Scan Conversion)

We will generally model objects with geometric primitives
• points, lines, and polygons

For display, we need to convert them to pixels
• for points it’s obvious
• but we’ll need some algorithms for lines and polygons

General Comments on Rasterization

Moving from continuous geometry to discrete pixels is inexact
• we’re attempting to approximate the primitive with pixels
• thus a certain amount of error is being introduced

Goal #1: Accuracy
• construct good approximations (i.e., low error)
• this can be hard because there may be many tricky cases

Goal #2: Efficiency
• this process is going to happen a lot

– imagine we need to draw 10 million polygons/second
• one near-universal strategy: implement this stuff in hardware

Line Rasterization

We have a 2-D line segment inside the viewport
• it’s been projected & clipped

To simplify discussion, assume slope is between 0 and 1
• other cases are symmetric

Our goal, fill in pixels “on” line
• actually, most nearly on
• as measured at pixel centers m0 ≤ ≤1

First Cut: Very Simple Line Algorithm

Compute equation of line

Now, start at the leftmost point and walk to the right
• in other words, increment x by 1 at each step
• for each x, compute y with equation

– need to round y to integral coordinate
– for instance, can use rint(y) or floor(y + 0.5)

• fill in pixel (x, y)

This is a correct algorithm, but it is inefficient
• requires floating point multiply/add/round for each pixel column

Fortunately, we can easily do better …

 where y
y mx b m

x

∆= + =
∆

A More Efficient Incremental Algorithm

What does the slope of a line mean?
• it’s the change in y for a unit change in x
• this is exactly what we need to know!

Again, let’s start at leftmost point and walk to the right
• increment x by 1 at each step
• increment y by m at each step
• fill in pixel (x, round(y))

This has a fancy name: Digital Differential Analyzer (DDA)

Obviously better than our first try, but still rather inefficient
• we’re still doing floating point add/round per pixel column

() () () ()y x m x b mx b m y x m+1 = +1 + = + + = +

Bresenham’s Algorithm (Midpoint Algorithm)

We’ll switch to the implicit form of the line equation

For the next pixel, we either increment x or both x, y
• we want to pick the one closest to the line
• can do this with our line equation above

x

y
0

0
0

 
=  
 

p

x

y
1

1
1

 
=  
 

p

 and x x x y y y1 0 1 0∆ = − ∆ = −

where () ()
y

F
x0

∆ 
= 2 ⋅ − = 0 = −∆ 

p n p p n

(,)x y+1

(,)x y+1 +1

(,)x y

Selecting the Next Pixel

We test the midpoint
• evaluate F at midpoint

>0 means it’s below line
≤ 0 means it’s on or above line

This tells us which pixel is closer
• and hence which one to pick

>0 increment x and y
≤0 increment x only

(,)x y 1
2+1 +

()F = 0p

The Key Insight

We can incrementalize this test of F

• note that the dot product can be precomputed
• incremental update of F requires a single integer addition!

So, we initially compute F at the beginning
• at each step, we use F to pick how to increment (x,y)

– hence it is called the decision variable
• and it also tells us how to increment F

() ()

()

F

F
0+ = 2 ⋅ + −

= + 2 ⋅
p d n p d p

p n d

If
(,) (,)

F

x y x y

F F y x

> 0
→ +1 +1

→ + 2∆ − 2∆

If
(,) (,)

F

x y x y

F F y

≤ 0
→ +1

→ + 2∆

where or
1 1   

=    0 1   
d

Bresenham’s Line Algorithm in C

void line(int x0, int y0, int x1, int y1)
{
int x = x0, y = y0;
int dx = x1-x0, dy = y1-y0;
int F = 2*dy-dx
int incX = 2*dy, incXY = 2*(dy-dx);

for(x=x0; x<=x1; x++)
{
write_pixel(x, y);
if(F<=0) { F += incX; }
else { F += incXY; y++; }

}
}

Bresenham’s (Midpoint) Algorithm for Circles

Can use the same methodology for drawing circles
• write the implicit equation of the circle

• derive decision variable scheme
• exploit 8-way symmetry — only need to compute 1 octant

And it even generalizes to other conic sections
• ellipses, parabolas, hyperbolas

See textbook for algorithm details

(,)F x y x y r2 2 2= + − = 0

Polygon Rasterization

We want to fill every pixel covered by the polygon

And we need to be really careful!
• suppose we have two adjacent polygons
• we don’t want any overlap or any cracks
• visit every covered pixel exactly once

What’s the Inside of a Polygon?

This is not obvious when the polygon intersects itself
• over time, people came up with some arbitrary definitions

Definition #1: Odd–even rule
• pass horizontal line through shape; points with odd # crossings are in
• this is the one generally used for polygon rasterization

What’s the Inside of a Polygon?

Definition #1: Odd–even rule
• pass horizontal line through shape; points with odd # crossings are in

Definition #2: Winding rule
• walk around entire polygon; add up # of times you encircle a point

– clockwise (+1) or counter-clockwise (-1)
• fill points with non-zero winding number

1

1
1

1

1

2

Scan Converting Polygons

Loop over all scanlines covered by polygon
• find points of intersection, from left to right
• fill all the interior spans

– these are the odd spans
– as per the odd–even rule

Some special cases to watch out for
• horizontal edges
• grazing vertices

Efficiently Tracking Scanline Intersections

We could do something simple, but inefficient
• directly compute intersection of every scanline with every edge

But we can do better by exploiting coherence of scanlines
• Create an Edge Table with all edges sorted by ymin
• Maintain Active Edge Table to hold list of edges intersecting

current scanline sorted left to right

If we process the polygon from ymin to ymax
• add edge to AET at its ymin value
• remove edge at its ymax value
• when the AET is empty, we’re done
• can use something like Bresenham’s line algorithm to

efficiently track x-coordinate of intersections

Topic #2: Visible Surface Determination

Rasterization will convert are primitives to pixels in the image
• but we need to make sure we don’t draw occluded objects

For each pixel, what is the nearest object in the scene?
• this is the only thing we need to draw at this pixel

– provided the object isn’t transparent
• we need to determine the visible surface

Painter’s Algorithm

Developed thousands of years ago
• probably by cave dwellers

Draws every object in depth order
• from back to front
• near objects overwrite far objects

What could be simpler?

Painter’s Algorithm:

sort objects back to front

loop over objects
rasterize current object
write pixels

first second third

But the Catch is in the Depth Sorting

What do we sort by?
• minimum z value — no maximum z value — no

• in fact, there’s no single z value we can sort by

Worse yet, depth ordering of objects can be cyclic
• may need to split polygons to break cycles

Looking at Painter’s Algorithm

It has some nice strengths
• the principle is very simple
• handles transparent objects nicely

– just composite new pixels with what’s already there

But it also has some noticeable weaknesses
• general sorting is a little expensive — worse than O(n)
• need to do splitting for depth cycles, interpenetration, …
• and what if the objects aren’t planar polygons?

Scanline Visibility

Looks a lot like polygon rasterization
• maintains active object table
• looks at one scanline at a time — no need to store entire image

– nice if memory is scarce

Scanline Algorithm:

sort objects by ymin

loop over scanlines
update active object list
sort active objects by x
loop over x values
find closest active object
write pixel

The Z-Buffer Algorithm

Create new frame buffer channel
• a depth component
• to go with our RGBα channels

Records depth of pixel contents
• overwrite pixel it’s farther away

This used to look pretty wasteful
• say 24 bits * number of pixels
• doubles size of framebuffer
• but memory is cheap now

Now most common method
• especially for hardware design

OpenGL — glEnable(GL_DEPTH_TEST)

Z-Buffer Algorithm:

allocate z-buffer
initialize values to infinity

loop over all objects
rasterize current object
for each covered pixel (x,y)
if z(x,y) < zbuffer(x,y)
zbuffer(x,y) = z(x,y)
write pixel

Looking at the Z-Buffer Algorithm

It has some attractive strengths
• it’s very simple, and easy to implement in hardware
• can easily accommodate any primitive you can rasterize

– not just planar polygons

But it does have a few problems
• it doesn’t handle transparency well
• needs intelligent selection of znear & zfar clipping planes

– z-buffers typically use integer depth values
– fixed bit precision mapped to range znear..zfar

Making Z-Buffers Efficient

When we rasterize a polygon, we need z value at each pixel
• we could just compute it at every pixel
• but this is pretty expensive

Can use the same incrementalization trick as in rasterization
• the projected polygon satisfies some plane equation

• we could compute the depth as

• but taking account of coherence

ax by cz d+ + + = 0

d ax by
z

c
− − −=

for fixed values of a
z x y

c
∆ = − ∆

Ray Casting

This is a very general algorithm
• works with any primitive we can write intersection tests for
• but it’s hard to make it run fast

We’ll come back to this idea later
• can use it for much more than visibility testing
• shadows, refractive objects, reflections, motion blur, …

Ray Casting:

loop over every pixel (x,y)
shoot ray from eye through (x,y)
intersect with all surfaces
find first intersection point
write pixel

