
Raster Image Processing



Image Compositing

Often want to combine a sequence of images together
• different parts of final image can come from different sources
• TV stations have been doing this for a long time

Introduce a new alpha channel in addition to RGB channels
• the α value of a pixel indicates its transparency

– if α=0, pixel is totally transparent
– if α=1, pixel is totally opaque

• alternatively, can think of α as the fraction of the pixel actually 
covered by the stored color

• convenient to work with premultiplied colors
Area α
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Image Compositing

Compositing one image over another is most common choice
• can think of each image drawn on a transparent plastic sheet
• the final image is formed by stacking layers together

Given images A & B, we can compute C = A over B

• if we pre-multiply α values, this simplifies to

This is only one possible compositing operator
• there are in fact 12 possible ways of combining 2 images
• read  Foley 17.6.1 for further details
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Example: Image Compositing

Given RGB colors    and      ( . , . , . ) ( , , ); . ; .A BA B α α= 0 8 0 6 1 0 = 111 = 0 5 = 0 2

Premultiply: ' ( . , . , . ) ' ( . , . , . )A BA A B Bα α= = 0 4 0 3 0 5 = = 0 2 0 2 0 2

 over 
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= +
= 1 + 1−
= 0 5 + 0 5 0 2 = 0 6

De-premultiply: '/ ( . , . , . )CC C α= = 0 83 0 67 1 0

Read RGBα values from frame buffer

Write RGBα values back into frame buffer



Image Processing

Construction of an image B as a function of an image A
• point processing: function of corresponding pixel only

example: B[x,y] = sqrt(A[x,y])
• filtering: function of local neighborhood

example: B[x,y] = average of neighbors of A[x,y]
• largely based on signal processing theory

Image processing is a key component in:
• retouching scanned photos (e.g., sharpening)
• automatic segmentation (e.g., foreground vs. background)
• image compression, particularly lossy schemes like JPEG
• and many others …



Simple Point Processing Examples

Invert image:  f(p) = 1−p
• for grayscale images, maps black to white and white to black
• affect on RGB images is a little less obvious

Grayscale Inversion RGB Inversion



Simple Point Processing Examples

Power law transformation:  f(p) = pk

• brightens if k < 1
• identity if k = 1
• darkens if k > 1

pk,  k > 1

0

1
pk,  k < 1

1

k = 0.4k = 2.8



Image Warping

Instead of modifying pixel values, map pixels to new locations

For example, we might apply a horizontal shear

Need to be careful when computing new image
• simply moving pixels from source to target can leave holes
• typically loop over target pixels and map them backwards into 

the source image

' ( , ) ' ( , )x f x y y g x y= =



Filtering Images

Simple filters are generally formulated in terms of convolution
• written as B = A⊗ f = f⊗ A
• these are probably the most common type

Things to notice about convolution formulas
• they’re linear functions
• the result at a point is a function of its neighborhood
• nominally, this neighborhood covers all available data

  

 

[ ] [ ] [ ]

[ , ] [ , ] [ , ]

t

s t

B x A t f x t

B x y A s t f x s y t

∞

=−∞

∞ ∞

=−∞ =−∞

= −

= − −

∑

∑ ∑

in 1-D:

in 2 -D:



Filtering Images

Naturally, we never want to sum over all the data
• want filter function f to be non-zero over a small area
• this area is the support of the filter

It is common practice to represent filters with block templates
• an array of weights applied to local neighborhood
• it looks like a matrix but it’s not

Here’s an example: a 3x3 grid, each cell having value 1/9
• it replaces a pixel by the equally

weighted average of its 3x3
neighborhood

• applying this will blur the image
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Using Filter Templates

To compute the pixel at location (x,y) of the output image
1. find corresponding (x,y) location of input image
2. pick up local neighborhood matching filter template size
3. weight each value of the input according to the value in the template
4. add all the weighted values together
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Blurring Filter Example

3x3 5x5 9x9



Blurring Filter Example: A Closer Look

3x3 5x5 9x9



The Problem of Aliasing

We are often beset by the problem of aliasing
• classic examples come up in rasterization (jaggies)

But aliasing can arise in other contexts
• when converting from continuous to discrete representations

We want to get rid of this problem
• we need methods for antialiasing



Jaggies: Spatial Aliasing

Jaggies are a particular instance of spatial aliasing
• converting a spatial function to discrete representation

Note that increasing resolution decreases jaggies
• consider the following two lines

• they come from geometrically identical line descriptions
• but are drawn on 300x300 vs. 8x8 grid
• the higher resolution one is obviously better



Where Do Jaggies Come From?

Our primitives don’t evenly cover all the pixels they touch

• higher resolution helps because the pixels are smaller
• and the amount of fractional coverage is smaller

What pixels do we fill in?
• all that are completely covered — artificially shrinks object
• all that are touched — artificially expands object



Getting Rid of Jaggies

The key idea is to use area-weighted sampling

• instead of simply filling in a pixel or not
• compute how much of the pixel is covered by the object
• and fill in with an appropriately scaled color

– e.g., 35% coverage = RGB (0.35, 0.35, 0.35) for a black object
– sounds familiar — a lot like alpha values



Getting Rid of Jaggies

When we introduce area-weighted sampling
• we transition from solid color jagged objects

• to more smoothly colored objects with multiple tones

• when viewed from a proper distance is hopefully smoother



Another Kind of Aliasing

Aliasing also arises when we try to sample small objects
• typically, pixels reflect samples taken at their centers
• when pixels are much smaller than objects, this matters little

Objects may be smaller than pixels
• very small fragments
• very thin slivers

Area sampling can fix this
• but we need to know what pixels they hit
• this will be a problem later with ray tracing



Common Method for Antialiasing

Don’t usually want to analytically calculate pixel coverage
• that would be expensive and slow down rendering
• non-trivial computation for higher-order objects
• and for fractals, does the answer even exist?

Instead, our most common attack is super-sampling
• suppose we want to produce a 256x256 image

– first, generate a 1024x1024 image
– then downsample to 256x256 by 4x4 averaging

• each output pixel is computed from 16 subpixel samples
• this reduces efficiency too (by a factor of 16)
• but at least we can control it, by the supersampling ratio



Aliasing in Action



Antialiasing in Action



A Closer Comparison



Aliasing in Time

Our animations can also experience temporal aliasing
• the motion of objects does not appear as it should

Consider a spoked wagon wheel
• suppose it rotates 7/8 around in 1 second
• and we take a picture of it every second

• it appears to be rotating backwards!



Aliasing in Time

In principle, this is the same phenomenon as spatial aliasing
• converting from continuous to discrete representation
• unlucky choice of discrete samples will give us bad results

Can solve the problem in the same way as spatial aliasing
• temporal supersampling and average
• in other words, motion blur



Final Thoughts on Aliasing

We can never really win
• no matter how much we supersample, aliasing remains
• it just gets less and less apparent
• and at some point, humans can’t detect it anymore


