
Where We Are: Static Models

Our models are static sets of polygons

We can only move them via transformations
• translate, scale, rotate, or any other 4x4 matrix

This does not allow us to simulate very realistic motion

So how do we fix this?

A Multitude of Spaces

Recall that transformations move us
between different coordinate spaces

Vertices move through many spaces

We change spaces for convenience
• as with the view transform

e1

e2 e′1
e′2

Object Space

World Space

Eye Space

Clip Space

Normalized Device Coordinates

Window Coordinates

Model Transform

View Transform

Projection

Perspective Division

Viewport Transform

First Step: Break the thing Apart

Model object as hierarchy of components
• each one can move
• and they move relative to parent

How do they move?
• with transformations

Body

Upper Head Lower

L Arm Torso R Arm

Introduce Transformation Nodes

Traverse hierarchy during draw
• object nodes: draw them
• transform nodes

– multiply into current matrix on way down
– remove from current matrix on way up

Constantly changing local coordinate system

Allows changes at different scales
• apply rotation above “Body”
• vs. rotation above “L Arm”

Body

Upper

L Arm

bodyM

upperM

larmM

Current Matrix

bodyM M⋅

body upperM M M⋅ ⋅

body upper larmM M M M⋅ ⋅ ⋅

Parameterizing Movement

So how do we control the movement of parts?

We have all these transformation nodes
• 4x4 matrix = 16 coefficients
• obviously don’t want to specify manually!

Could just specify sets of rotate, translate, scale
• much handier
• but still lacks one crucial thing — things might fall apart

Parameterizing Movement

We want to link things with joints

Example for a shoulder
• specify corresponding points that remain together
• provide a joint angle parameter
• just like building people with cardboard cut-outs

Construct transform from parameters

θ

Building Hierarchies

We need some good way to build them
• manual manipulation — select objects and hit “Group” button
• graph layout — draw graphs directly
• textual description of hierarchy
• write scripts to generate hierarchy

And we need to manipulate the transformations
• type in rotate, scale, translate values
• attach parameters to GUI elements (e.g., sliders)
• write little procedural controllers

– for instance, “increment angle every 1.3 seconds”
– acts sort of like a motor

Matrix Stacks

Instead of a current matrix, we need a matrix stack
• current matrix is just the top of the stack

Stack operations
• PUSH — duplicate matrix on top glPushMatrix()
• POP — remove matrix on top glPopMatrix()

When traversing hierarchies
• PUSH on entering transformation node
• multiply transformation into current matrix
• descend to children
• POP when returning up the tree

Push Mult. B PopA A

A

AB

A

A

Implementing Transformation Nodes

Be careful about transformation order
• (usually) want to scale before rotation
• (usually) want to rotate before translation

Simple 2-D Case:
glPushMatrix();
glTranslatef(dx, dy); // Further translation
glTranslatef(cx, cy); // Back to center
glRotatef(angle, 0, 0, 1);
glScalef(s, t);
glTranslatef(-cx,-cy); // Center to origin
… descend to children …
glPopMatrix();

Example: Building a Simple Arm

upper arm
lower arm (forearm)

User Control Parameters:
shoulder joint angle
elbow joint angle
where shoulder meets torso

φ
θ

U

L

t
θ

U

L

s 1e

2e w

U

Lφ

We want to model this arm as
a hierarchy.

Out of these basic components.

t

Positioning the Forearm

Initially: segments in same position

First: perform elbow rotation
• translate elbow joint to origin
• rotate by given angle

1e

2e w
UL

2e

w

U

L(1) translate
(2) rotate

()

()θ
2−e

1

shoulder joint location
elbow joint locations
wrist joint location

, 2

s

e e

w

Attaching Forearm to Upper Arm

Second: align corresponding elbows

Third: perform shoulder rotation
• must operate on whole arm

(3) translate()1e

1 2=e e

w

U

L

s

1 2=e e

w

L

s

(4) translate
(5) rotate

()

()φ
−s

U

Placing the Shoulder

Fourth: put shoulder in right spot

And we’re done!

Important things to notice
• presents limited control knobs
• automatically handle interconnection

– e.g., elbow joint

(6) translate()t

1 2=e e

w

=s t

L

U

Exercise: Converting to Hierarchy

2()
()

(1) translate
(2) rotate θ

−e

1()(3) translate e

()
()

(4) translate
(5) rotate φ

−s

()(6) translate t

L

U

trans t

What’s the
hierarchy to

put in here?

Scene Graphs

This idea can be extended to the whole scene
• collect every object into a single hierarchy

Provides several nice advantages
• natural way of defining bounding volumes for culling
• can instance same model in many places

– but graph is no longer a tree
– it’s a more general DAG

• can introduce new node types also
– light nodes
– material nodes

Truck

Parking Lot Street

OpenGL State Stack

In OpenGL, you can also push/pop state variables
• glPushAttrib(…)
• glPopAttrib()

Pass to glPushAttrib() a bitfield describing what to push
• GL_ALL_ATTRIB_BITS
• GL_ENABLE_BIT — everything set by glEnable
• GL_LIGHTING_BIT — light position, colors, materials, …
• GL_CURRENT_BIT — current color, normal, …
• and several others

How to Generate Animation?

We can create & parameterize models now
• design the geometry
• set up a bunch of control knobs (e.g., joint angles)

But how do we animate these models
• don’t want to manually tweak transformation parameters

We’ll specify parameters as functions of time
• but we need to do this conveniently

– no writing out explicit polynomial functions

Recall How We Display Animation

We create animated behavior just like movie projectors
• display a sequence of still images in rapid succession
• creates the illusion of continuous motion
• typically want 30 frames/sec, and definitely higher than 10

Given some parameterized hierarchical model
• for every frame, we calculate the correct parameter values
• we set our hierarchy control knobs appropriately
• and we draw the scene in its current state

We’re going to need to figure out how to control parameters
• key-framing — specify poses and automatically interpolate
• physically-based motion — simulate physical laws

