
Where We Are: Static Models

Our models are static sets of polygons

We can only move them via transformations
• translate, scale, rotate, or any other 4x4 matrix

This does not allow us to simulate very realistic motion

So how do we fix this?



A Multitude of Spaces

Recall that transformations move us
between different coordinate spaces

Vertices move through many spaces

We change spaces for convenience
• as with the view transform
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First Step: Break the thing Apart

Model object as hierarchy of components
• each one can move
• and they move relative to parent

How do they move?
• with transformations
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Introduce Transformation Nodes

Traverse hierarchy during draw
• object nodes: draw them
• transform nodes

– multiply into current matrix on way down
– remove from current matrix on way up

Constantly changing local coordinate system

Allows changes at different scales
• apply rotation above “Body”
• vs. rotation above “L Arm”
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Parameterizing Movement

So how do we control the movement of parts?

We have all these transformation nodes
• 4x4 matrix = 16 coefficients
• obviously don’t want to specify manually!

Could just specify sets of rotate, translate, scale
• much handier
• but still lacks one crucial thing — things might fall apart



Parameterizing Movement

We want to link things with joints

Example for a shoulder
• specify corresponding points that remain together
• provide a joint angle parameter
• just like building people with cardboard cut-outs

Construct transform from parameters
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Building Hierarchies

We need some good way to build them
• manual manipulation — select objects and hit “Group” button
• graph layout — draw graphs directly
• textual description of hierarchy
• write scripts to generate hierarchy

And we need to manipulate the transformations
• type in rotate, scale, translate values
• attach parameters to GUI elements (e.g., sliders)
• write little procedural controllers

– for instance, “increment angle every 1.3 seconds”
– acts sort of like a motor



Matrix Stacks

Instead of a current matrix, we need a matrix stack
• current matrix is just the top of the stack

Stack operations
• PUSH — duplicate matrix on top glPushMatrix()
• POP — remove matrix on top glPopMatrix()

When traversing hierarchies
• PUSH on entering transformation node
• multiply transformation into current matrix
• descend to children
• POP when returning up the tree
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Implementing Transformation Nodes

Be careful about transformation order
• (usually) want to scale before rotation
• (usually) want to rotate before translation

Simple 2-D Case:
glPushMatrix();
glTranslatef(dx, dy); // Further translation
glTranslatef(cx, cy); // Back to center
glRotatef(angle, 0, 0, 1);
glScalef(s, t);
glTranslatef(-cx,-cy); // Center to origin
… descend to children …
glPopMatrix();



Example: Building a Simple Arm

upper arm
lower arm (forearm)

User Control Parameters:
shoulder joint angle
elbow joint angle
where shoulder meets torso
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Positioning the Forearm

Initially: segments in same position

First: perform elbow rotation
• translate elbow joint to origin
• rotate by given angle
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Attaching Forearm to Upper Arm

Second: align corresponding elbows

Third: perform shoulder rotation
• must operate on whole arm
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Placing the Shoulder

Fourth: put shoulder in right spot

And we’re done!

Important things to notice
• presents limited control knobs
• automatically handle interconnection

– e.g., elbow joint
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Exercise: Converting to Hierarchy
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Scene Graphs

This idea can be extended to the whole scene
• collect every object into a single hierarchy

Provides several nice advantages
• natural way of defining bounding volumes for culling
• can instance same model in many places

– but graph is no longer a tree
– it’s a more general DAG

• can introduce new node types also
– light nodes
– material nodes
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OpenGL State Stack

In OpenGL, you can also push/pop state variables
• glPushAttrib(…)
• glPopAttrib()

Pass to glPushAttrib() a bitfield describing what to push
• GL_ALL_ATTRIB_BITS
• GL_ENABLE_BIT — everything set by glEnable
• GL_LIGHTING_BIT — light position, colors, materials, …
• GL_CURRENT_BIT — current color, normal, …
• and several others



How to Generate Animation?

We can create & parameterize models now
• design the geometry
• set up a bunch of control knobs (e.g., joint angles)

But how do we animate these models
• don’t want to manually tweak transformation parameters

We’ll specify parameters as functions of time
• but we need to do this conveniently

– no writing out explicit polynomial functions



Recall How We Display Animation

We create animated behavior just like movie projectors
• display a sequence of still images in rapid succession
• creates the illusion of continuous motion
• typically want 30 frames/sec, and definitely higher than 10

Given some parameterized hierarchical model
• for every frame, we calculate the correct parameter values
• we set our hierarchy control knobs appropriately
• and we draw the scene in its current state

We’re going to need to figure out how to control parameters
• key-framing — specify poses and automatically interpolate
• physically-based motion — simulate physical laws


