Where We Are: Static Models

Our models are static sets of polygons

T a il |
-\ % |

e

®

We can only move them via transformations
* translate, scale, rotate, or any other 4x4 matrix

This does not allow us to simulate very realistic motion

So how do we fix this?

A Multitude of Spaces

Recall that transformations move us
between different coordinate spaces

e
2]
Wel

Vertices move through many spaces

We change spaces for convenience
* as with the view transform

Object Space

* Model Transform
World Space

* View Transform
Eye Space
* Projection

Clip Space
* Perspective Division

Normalized Device Coordinates

* Viewport Transform

Window Coordinates

First Step: Break the thing Apart

Model object as hierarchy of components

* each one can move

« and they move relative to parent

How do they move?
» with transformations

Body
Upper | | Head | | Lower
LArm || Torso || R Arm

Introduce Transformation Nodes

Traverse hierarchy during draw Current Matrix
» object nodes: draw them
* transform nodes M body
— multiply into current matrix on way down ‘
— remove from current matrix on way up M owody Body
Constantly changing local coordinate system ‘
M

Allows changes at different scales ‘

« apply rotation above “Body” M M poay LM ypper Upper

» vs. rotation above “L Arm” ‘

M D\4body D\4upper D\4Iarm L Arm

Parameterizing Movement

So how do we control the movement of parts?

We have all these transformation nodes
» 4x4 matrix = 16 coefficients
« obviously don’t want to specify manually!

Could just specify sets of rotate, translate, scale

* much handier
* but still lacks one crucial thing — things might fall apart

/B A

Parameterizing Movement

We want to link things with joints

Example for a shoulder

« specify corresponding points that remain together

* provide a joint angle parameter

* just like building people with cardboard cut-outs

Construct transform from parameters

v

6
S

Building Hierarchies

We need some good way to build them
« manual manipulation — select objects and hit “Group” button
 graph layout — draw graphs directly
« textual description of hierarchy
* write scripts to generate hierarchy

And we need to manipulate the transformations
* type in rotate, scale, translate values
« attach parameters to GUI elements (e.q., sliders)
« write little procedural controllers
—for instance, “increment angle every 1.3 seconds”
—acts sort of like a motor

Matrix Stacks

Instead of a current matrix, we need a matrix stack

* current matrix is just the top of the stack

Stack operations

« PUSH — duplicate matrix on top
« POP — remove matrix on top

When traversing hierarchies
« PUSH on entering transformation node

« multiply transformation into current matrix

e descend to children

« POP when returning up the tree

A

Push

>

A

Mult. B

>

A

AB

glPushMatrix()
glPopMatrix()

Pop A

Implementing Transformation Nodes

Be careful about transformation order
* (usually) want to scale before rotation
* (usually) want to rotate before translation

Simple 2-D Case:

gl Pushvatri x();

gl Transl at ef (dx, dy); // Further translation
gl Transl atef (cx, cy); // Back to center

gl Rotatef(angle, 0O, 0, 1);

gl Scal ef (s, t);

gl Transl atef (-cx, -cy); // Center to origin
...descend to children ...

gl PopMatri x();

Example: Building a Simple Arm

We want to model this arm as Out of these basic components.

a hierarchy. @

___________________________ S ()
t e L &
e, w

U upper arm
L lower arm (forearm)

User Control Parameters:

@ shoulder joint angle

0 elbow joint angle

t where shoulder meets torso

Positioning the Forearm

Initially: segments in same position

S shoulder joint location
e,,e, elbow joint locations
w wrist joint location

First: perform elbow rotation
« translate elbow joint to origin
* rotate by given angle

(1) translate(-e,)
(2) rotate(8)

Attaching Forearm to Upper Arm

>

Second: align corresponding elbows

(3) translate(e,)

Third: perform shoulder rotation
* must operate on whole arm

(4) translate(-s)
(5) rotate(e)

Placing the Shoulder

Fourth: put shoulder in right spot
(6) translate(t)

And we’re done!

Important things to notice
 presents limited control knobs
» automatically handle interconnection
—e.g., elbow joint >

Exercise: Converting to Hierarchy

trans t

2N

/7
/

/
/ What'’s the

hierarchy to
/ put in here?/

/ /

\
I
/

N

U

(1) translate(-e,) TO

(2) rotate(8)

(3) translate(e,) TJ
(4) translate(-s) I ()
(5) rotate(y)

(6) translate(t) t J

Scene Graphs

This idea can be extended to the whole scene
» collect every object into a single hierarchy

Provides several nice advantages

* natural way of defining bounding volumes for culling
 can instance same model in many places

—but graph is no longer a tree
—it's a more general DAG
* can introduce new node types also
—light nodes
—material nodes

Parking Lot

Street

N

Truck

OpenGL State Stack

In OpenGL, you can also push/pop state variables
* glPushAttrib(...)
* glPopAttrib()

Pass to glPushAttrib() a bitfield describing what to push
« GL_ ALL ATTRIB BITS
« GL_ENABLE_ BIT — everything set by glEnable
« GL_LIGHTING_BIT — light position, colors, materials, ...
« GL_ CURRENT _BIT — current color, normal, ...
« and several others

How to Generate Animation?

We can create & parameterize models now
 design the geometry
« set up a bunch of control knobs (e.g., joint angles)

But how do we animate these models
 don’t want to manually tweak transformation parameters

We’ll specify parameters as functions of time

* but we need to do this conveniently
—no writing out explicit polynomial functions

Recall How We Display Animation

We create animated behavior just like movie projectors
« display a sequence of still images in rapid succession
« creates the illusion of continuous motion
* typically want 30 frames/sec, and definitely higher than 10

Given some parameterized hierarchical model
« for every frame, we calculate the correct parameter values
» we set our hierarchy control knobs appropriately
« and we draw the scene in its current state

We’re going to need to figure out how to control parameters
 key-framing — specify poses and automatically interpolate
* physically-based motion — simulate physical laws

