The Importance of Surface Texture

Objects in the real world have rich, detailed surface textures
 to produce believable scenes, we must replicate this detail
« uniformly colored surfaces only get us so far

Generated with Blue Moon Rendering Tools —

How Do We Model Intricate Surface Detail?

Approach #1: Explicit geometric representation
« actual polygons that model all the surface variations
* up to some finest level of detail
* may generate a /ot of polygons

Approach #2: Geometry + texture images
« geometry only describes the general shape of the object
 paste an image onto the wall to give the appearance of brick

Often We Use Simple Patterns

Generally useful for skin, bricks, stucco, granite, ...

Typically need to repeat texture over the object
 must make sure there are no seams when texture is tiled

'.“ #‘J -
b Y
s

Or Given a Model and a Single Texture

Sample model from

Wrap the Texture onto the Model

Sample model from

Framework for Texture Mapping

The texture itself is just a 2-D raster image
 acquired from reality, hand-painted, or procedurally generated

Establish a corre§Pondence between surface points & texture

When shading articular surface point
* look up the corresponding pixel in the texture image
« final color of point will be a function of this pixel

Texturing Polygonal Models

Polygonal models don’t have a natural 2-D parameterization
* we need to create one

For each vertex, we specify a texture coordinate
* a (u,v) pair that maps that point into the texture image
* a triangle on the surface will be mapped to a triangle in texture
* can interpolate texture coordinates over the triangle
* note that the size of the triangle may be quite different

Texturing with Intermediate Surfaces

There are certain objects that are easy to parameterize
» spheres and cylinders are good examples

For a given object, we can often establish a mapping to one of these
» this implicitly provides a parameterization of the surface

Intermediate object

(a) (b) (c)

Texturing and Rasterization

During rasterization, we traverse the pixels of a triangle
« at each pixel we interpolate the correct texture coordinate
« and we retrieve the corresponding texel (texture element)

What do we do with the contents of the texel?
* color — use it to fill in the current pixel
- reflectance — coefficient for illumination equation (e.g., k;)
* transparency — an alpha value
« and many others, some of which we’ll discuss next time

Minification & Magnification

Minification: 1 pixel covers multiple texels

Magnification: 1 texel covers multiple pixels

-

L L s x A

Texture Screen

7 Surface

OpenGL Texture Modes

Determines how the contents of the texture are interpreted

For RGB images:
GL_MODULATE — multiply together with surface color

GL_BLEND — use as a t value to blend surface color and a
predetermined color

GL DECAL and GL_REPLACE — use texture color directly

Texturing with OpenGL

First, turn on texturing — glEnable(GL_TEXTURE_2D)

Next, pass the actual texture image to OpenGL

 glTexlImage2D(GL_TEXTURE_2D, level, channels,
width, height, border, format, type, image)

« for now, level=0 and border=0

« channels is usually 3 (RGB)

—with format=GL_RGB and type=GL_UNSIGNED_BYTE

Have lots of options to control texturing behavior
* see glTexEnvf() and glTexParameterf() for details
—texture coordinates clamped to [0,1] or do they wrap around?
—how is the color of the texture applied to the surface?

Texturing with OpenGL

Here’s an example setup

gl Enabl e(GL_TEXTURE_2D) ;

gl TexEnvf (GL_TEXTURE ENV, G._TEXTURE ENV_MODE, G._MODULATE);

gl TexParaneterf (G._TEXTURE 2D, G._TEXTURE WRAP_ S, GL_REPEAT);

gl TexParaneterf (G _TEXTURE 2D, G._TEXTURE WRAP T, GL_REPEAT);

gl TexParaneterf (G._TEXTURE 2D, G._TEXTURE MAG FI LTER, G._LI NEAR);
gl TexParaneterf (G._TEXTURE 2D, GL_TEXTURE M N FILTER, G._LI NEAR);

gl Texl mage2D(GL_TEXTURE 2D, 0, 3, wi dth, height, O,
GL_RGB, GL_UNSI GNED BYTE, i nmage);

This configures the texturing system to
« combine (modulate) the texture color with the surface color
« wrap texture coordinates around outside unit square
* linearly average texels when “magnifying” and “minifying”

Texturing with OpenGL

When drawing, just assign texture coordinates to vertices

gl Begi n(G._TRI ANGLES) ;
gl Nor mal 3f v(nl);
gl TexCoord2f (s1, t1);
gl Vertex3fv(vl);

gl Nor mal 3f v(n2);
gl TexCoord2f (s2, t2);
gl Vertex3f(v2);

gl Nor mal 3f v(n3);
gl TexCoor d2f (s3, t3);
gl Vertex3fv(v3);

gl End() ;

Solid Texture

Instead of texture images, we can define texture volumes
* create a 3-D parameterization (u,v,w) for the texture
« map this onto the object
» the easiest parameterization (u,v,w) = (x,y,z)

Turns out to be a powerful technique
« for procedural generation
« more readily applies to implicit surfaces

 and other surfaces without natural
2-D parameterizations

Some Texturing Applications

First, there’s the obvious one: realistic surface detail
 paste a fur, marble, face scan, ... on a surface

We can also support illumination precalculation
* suppose we precompute some expensive lighting effects
—soft shadows, indirect light (e.g., radiosity)
 can hard code this lighting into texture maps

Texturing can also be handy for faking objects

* billboards — place image on a polygon which always rotates to
face the viewer (handy for things like trees)

* sprites used in video games are a similar idea

And texturing is useful for level of detail management
 can decouple resolution of texture from resolution of surface

