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A b s t r a c t - - T h i s  paper considers a CeoX/G/1 queue with preemptive resume priority. Service 
times of messages of each priority class are i.i.d, according to a general distribution function that 
may differ between two classes. The analysis is based on the generating function technique and 
the supplementary variable method. We derive the joint system occupancy distributions at various 
observation instant and provide the analysis of the system time and the busy period. (~) 2001 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Pr ior i ty  mechanisms are an invaluable scheduling method  tha t  allows messages of  different classes 

to receive different quali ty of service (QoS). For this reason, the priori ty queue has received 
considerable a t tent ion in the literature. Two well-known priority disciplines in queueing l i terature 

are the  nonpreemptive and the preemptive disciplines. The  first was in t roduced by C o b h a m  [1]. 
Under  this rule, if a message of high priority arrives when a message of  low priori ty is being 

served, it waits until the message in service completes its service. The  second assumes t h a t  a 

message of high priori ty has a right of replacing the message of  low priori ty from the server. 

Since messages of high priori ty interrupt  the service of a message of  low priority, the message of 

low priori ty on its re-entry may  either resume its service from the preempted  point,  or repeat  its 

service. The  former is called the preemptive resume rule and the lat ter  is called the preemptive  
repeat  rule. Obviously under  the resume rule, the service t ime of a message of low priori ty upon 

re-entry gets reduced by the  amount  of t ime the message has already spent in service. 
Let  us review some related papers. Many  authors  have studied priori ty queueing systems.  

C o b h a m  [1], Lee [2], Machihara  [3], and Sugahara  et al. [4] have studied cont inuous- t ime priori ty 
queues. Numerous  examples of discrete-time queues can be found opera t ing  within present com- 
puter  and communica t ion  systems. The  analysis of such discrete-t ime priori ty queues is therefore 

very impor t an t  and numerous  studies of it exist within the  literature. Choi et al. [5,6], Hashida  
and Takahashi  [7], Khamisy  and Sidi [8], and Takine et al. [9] have studied discrete-t ime priori ty 
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queues, where service times of messages of all classes are assumed to be constant and equal to 
the slot size. As a result, there is no distinction between the nonpreemptive and the preemptive 
priority systems. Sidi [10] and Sidi et al. [11] have analyzed the discrete-time structured input 

queue under nonpreemptive priority rule, where the service t ime is to be constant for all classes. 
Khamisy and Sidi [8] considered discrete-time priority queueing systems with two-state Markov 
modulated arrivals, where the service time is one slot for all classes. Gup ta  and Georganas [12] 
analyzed the input queueing switch. They modeled each input queue as a two-class Geo /G /1  
queue with nonpreemptive priority and obtained the mean delay of two priority classes, respec- 
tively. Schorams [13] derived iterative algorithms that  permit  the evaluation of the steady state 

waiting and system time probabilities for two different priority classes in a discrete-time queueing 
system. 

This paper  considers a discrete-time GeoX/ G/ 1  queue accepting two classes of messages with 
preemptive resume priority. Bruneel and Kim [14], and Hashida [15] also studied the priority 
queue, but they only just obtained the marginal probability generating function (PGF) for the 
queue size of each priority classes. Using the generating function technique and the supplementary 
variable method,  we derive the joint PGFs  of the system occupancy distributions at various 
observation instant and provide the analysis of the system time and the busy period. Note that  
the supplementary variable method has successfully been applied to various queueing systems. 

2. M O D E L  

There are two priority classes of messages; class-1 and class-2. A higher priority is assigned 
to class-1. Messages in each priority class arrive to the system in accordance with correspond- 
ing batch geometric process [6,16]. Let A(z) (respectively, B(z)) be the P G F  of the number a 
(respectively, b) of class-1 (respectively, class-2) messages that  arrive in each slot. The number 
of messages of each class that  arrive in the same slot is independent of each other. The sys- 
tem consists of two separate buffers of infinite capacity to accommodate  arriving messages of 
corresponding priority classes. 

There is a single server. Messages are served under the preemptive resume priority discipline. 

Thus, messages of high priority interrupt the service of a message of low priority and the message 
of low priority on its re-entry resumes its service from the preempted point. Messages in the 
same class are served in FIFO order. The service times of messages in each priority class are 
independent and identically distributed in accordance with a general probabili ty distribution 
which may differ between two priority classes. Let Si(z) denote the P G F  of the service t ime si 
for class-i, i = 1, 2. All messages arriving to the system are assumed to be eventually served, i.e., 
A'(1)S~ (1) + B'(1)S~(1) < 1. The service times and the arrival processes are also assumed to be 
mutual ly independent. 

Before proceeding to the analysis, we define some random variables. Let a random variable n(k i) 
indicate the number of class-/ messages in the queue (excluding a possible one in service or in 

limbo) at the end of slot k. A supplementary random variable h~ i) is defined as follows: h~ i) 
indicates the remaining service time if a class-/ message is in service or in limbo at the end of 

, , . (1 )  (1) . (2)  
slot k, and otherwise h2 i) = 0. Then l ink , n k , n k , n(k 2))} constitutes a Markov chain embedded 
at the end of each slot. 

3 .  E M B E D D E D  M A R K O V  C H A I N  

If we denote by ak and bk the numbers of class-1 and class-2 messages, respectively, entering 
the system during slot k, then the system under consideration evolves as follows. 

(a) If h~: ') = h (2) = O: 

)+ 
?~k+l = n -- 1 -~ak+l; 
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Irk+l-(2) ---~ { (n(k2) -- 1) + +bk+l' 
n~ 2) + bk+1, 

h(1) { 0, if n~ 11 = 0, 
k + l  = n ~ l )  s~ - 1, if > O; 

h(2) { 0, 
k + l  

s2 - 1, 

if n(k 1) = 0, 

if n~ 1) > 0; 

if n(k 1) > 0 or n~ 2) -- 0, 

if n (1) = 0 and n(k 2) > 0. 
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(b) If h~ ') = 0 and h~ 2) > 0: 

n(1) = ( - 1 )  + a k + l ;  k+l n(1) + 

n(2) = n(k2) + bk+l" k + l  

h(1) ~ 0, if n~ 1) = 0, 

k+l = ~. if n (1) O; Sl  - -  1, > 

h(2) ~ h (2)- 1, if n ( 1 ) :  0, 

k+l : [ h~ 2), if n~ l) > 0. 

(c) If h(k 1) > 0: 

(1) = nO) nk+ 1 + ak+l ; 

n(2) = n(2) k+l + bk+l; 

h(1) = h ( 1 ) - l ;  
k + l  

h(2) = h~2). k + l  

, . (1 )  (1) . (2)  (2). 
Now, let us define Pk(x, z, y, w) as the joint P G F  of the s ta te  vector  in k , n k , n k , n k ), valid 
at the  end of slot k 

Pk(x,z,y,w) =_ z~ y~ ~ , ~  ] .  (1) 

The  next  s tep is to derive a relationship between Pk(x, z, y, w) and Pk+l(x, z, y, w) by using the 
above s ta te  equations.  We proceed as follows: 

Pk+l(X,z,y,w)=A(z)B(w) [1 Pk(x,z,y,w)+ { Sl(X)xz xl} Pk(O,z,y,w) 

{1 sl(x)} w)+{s2(y) 1}pk(o,0,o,w)+{ 1 s2(y)}pk(o,o,o,,o)l. + Pk(O,O,y, y xz yw y yw 

(2) 

A s teady-s ta te  joint P G F  is defined as 

P(x,z,y,w) =- lira Pk(x,z,y,w), (3) 
k---*oo 

provided tha t  the system reaches a s teady state. Lett ing k --~ oc in equat ion (2) and solving 
for P(x, z, y, w), we get 

[x-  A(z)B(w)]P(x'z'Y'W) = xA(z)B(w) [{ Sl(x)xz ! } P(O,z,y,w) 

0 0 0 {1 0 o 
(4) 
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Since IA(z)B(w)] _< 1 and P(x, z, y, w) is analyt ical  function in the closed polydisk  Ixl, ]Yl, ]z[, 
Iwl < 1, the  r ight -hand side (RHS) of equat ion (4) mus t  be zero for x = A(z)B(w). Therefore ,  
choosing x = A(z)B(w) in equat ion (4), we have 

[ z -  Sl(A(z)B(w))]P(O,z,y,w)= [zA(z)B(w) SI(A(z)B(w))] P(O,O,y,w) 

Y yw j 

(5) 

We will show tha t ,  for a given w with lw I <_ 1, z -  $1 (A(z)B(w)) = 0 has a unique root  z = z*(w) 
in Izl _< 1. W e  define f(z) = z and g(z) =- -Sl(A(z)B(w)) .  Subst i tu t ing  z = zo+Az for Iz0I = 1, 

/~Z[ dg(z) ] I A z ] < < l a n d  Iwl_< 1, we h a v e g ( z 0 + A z )  =g(zo)+ t dz Jz=~o+o(Az) and 

Az [dg/z/1 
Ig(zo + Az)l < Ig(zo)l + t dz J z=,ol + o(Az). (6) 

Since fg(zo)l = [Sl(A(zo)B(w)) I _< 1 and Irdg(a)lzL dz , =o,Z I _< A'(1)S~(1) ,  we get Ig(zo + Az)l <_ 
1 + A ' (1)S[(1) I  A zl + o(Az). Hence, on Izl = 1 + e for a small posi t ive real e, Ig(z)l <_ 1 + 
A'(1)S~(1)e + o(e) and obviously If(z)l = 1 + e. Since If(z)l > Ig(zDI on Jzl = 1 + e, by Rouch~'s 
t heorem [16], f(z) and f(z) + g(z) have the same number  of  zeros inside Izl = 1 + e. Since f(z)  
has a unique zero inside Izl = 1 + e, z - SI(A(z)B(w)) = 0 has a unique root  z = z*(w) in the  
closed disk tzl < 1. Since P(0 ,  z, y, w) is analyt ical  funct ion for [z I _< 1, the  RHS of (5) mus t  be  
zero for z = z*(w). Therefore,  we have 

[y - A (z*(w)) B(w)]  P(0,  0, y, w) 

:A(z*(w))B(w)  [{S~_~y) 1} P ( 0 , 0 , 0 ,  w ) +  { y  S 2 ( y ) }  P(0 ,  0, 0, 0)] . (7) 

If  we choose y = A(z*(w))B(w) in equat ion (7), the RHS of equat ion (7) mus t  then  vanish 
for [Yl, Iw[ -< 1, which yields 

P(O, O, O, w) = wA (z*(w)) B(w) - $2 (A (z*(w)) B(w)) P(O, 0, 0, 0). 
w - $2 (A (z*(w)) B(w)) (8) 

By tak ing  the derivat ive with respect  to x of equat ion (4) and pu t t ing  x = z = y = w = 1, we 
get 

P(0,  0, 0, 0) = 1 - A'(1)S'I  (1) - B'(1)S.~(1). (9) 

Hence, the P G F  P(x, z, y, w) is de termined.  

4 .  S Y S T E M  O C C U P A N C Y  

In this section, we will derive expression for the P G F s  of the  sys tem occupancy  measured  a t  
four different sets of t ime instant .  More specifically, we will s tudy  the following s t eady  s t a t e  
r a n d o m  variables: 

n (i) = queue occupancy  of class-/ messages a t  r andom slot boundaries ,  
r (iy = sys tem occupancy  of class-/ messages at  r andom slot boundaries ,  

d5 0 = sys tem occupancy  of c l a s s - /messages  at  depar tu re  t imes of class-j  messages,  

d (i) ==- sys tem occupancy  of c l a s s - /messages  at  depar tu re  t imes of any  message,  

c (i} =- sys tem occupancy  of class-/ messages at arrival t imes of class-/ messages,  
q(O = sys tem occupancy  of c l a s s - /messages  at  r andom t ime points.  
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T h e  cor responding  P G F s  are indicated as 

N ( z , w )  - E [zn'"w'~(:)] , 

r a(.,, aq=)l Dj(z ,w)  =- E kz-, w-, j ,  

C(O(z) = E [zd°] , 

R(z ,  w) - E [ z ' " ' w ' { ' ]  , 

D(z ,  w) - E [zd~l',,,d{'] , 

Q ( z , w )  =_ E [zq(i)wq(2)] , 

(10) 

(11) 

(12) 

respectively.  

A. S y s t e m  O c c u p a n c y  at R a n d o m  Slot  B o u n d a r i e s  

According to  our  deve lopments  in the  previous section, N(z,  w) can be ob ta ined  for P(x, z, y, w) 
by s imply  pu t t i ng  x = y = 1 

N(z,  w) = P(1 ,  z, 1, w). (13) 

Since 
'r (0 = n (0 + min ( h ( 0 , 1 )  , 

for i = 1, 2, the  joint  P G F  R(z, w) is given by 

(14) 

R(z, w) = (1 - z ) ( 1 - w ) P ( O ,  z ,O,w)+w(1 -z)P(O,  z, 1, w) + z ( 1  - w ) P ( 1 ,  z, 1, w)+zwP(1 ,  z, 1, w). 

B.  S y s t e m  O c c u p a n c y  at D e p a r t u r e  T i m e s  

T h e  r a n d o m  variable  d(. i) can be expressed a s  J 

d~ 1 ) =  u~l)-~ - a; d~2)= u~2)+ b; d ~ l ) =  a; d(22) = u~2)+ b, (15) 

where  u~ i) denotes  the  number  of class-/ messages in the queue a t  the  end of an a rb i t r a ry  slot 

wi th  h (1) = 1, and u(2 ~) denotes  the  number  of class-2 messages in the  queue at  the  end of an 
a r b i t r a r y  slot wi th  h (2) = 1 and n (1) = 0. Therefore,  we obta in  

Dl (Z ,  w) = 1 - S i (1)A'(1) - S I ( 1 ) B ' ( 1  ) x - - w  - 1 x wA (z* (w)) B(w) - $2 (A (z* (w)) B(w))  
A'(1)  [1 - S{(0)] w w - $2 (A (z*(w)) B(w) ) 

[ }] × 1 - -  
z -- SI (A(z)B(w))  1 - ~ - ~ ( w )  z z ~ ~ ~ )  ' 

D2(z,~) = B'(1)[1--- S;(O)] A(z*(~))B(~) S;(O)~ P(O,O,O,~) 

and 

D(z, w) = A(z)B(w)  
P { h  O) = 1} Dl(z ,w)  + P {h (2) = 1 ,n  (1) = 0} D2(z,w) 

P {h(I) = 1} + P {h(2) = 1 , ' / t  (1) = 0 }  (16) 

C. S y s t e m  O c c u p a n c y  as S e e n  by N e w  A r r i v a l s  

To invest igate  the  probabi l i ty  d is t r ibut ion of the  r andom variable  c (0, we need more  detai led 
in format ion  on the  way in which messages enter  the queueing system.  First ,  the  numbers  of 
arrival  ins tants  falling in the  consecutive slots for each class are assumed to be independent  and 
identical ly dis t r ibuted.  Let  ti be  the  number  of arrival ins tants  of class-/ in one slot and  ~ ( z )  
the  P G F  of ti. Next ,  the  numbers  of messages enter ing the  sys tem at  each arrival  ins tant  are 
also assumed to  be independent  and identically dis t r ibuted.  Let  l, be the  bulk size of class-/ 
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messages at  each arrival instant  and Li(z) be the P G F  of li. Then,  the P G F s  A(z) and B(z)  can 
be obtained from 

A(z) = r , (L i (z ) ) ,  B(z) = T2(L2(z)). (17) 

Consider a tagged message tha t  arrives at the system. Let us refer to the slot in which its arrival 

instant  is s i tuated as the tagged slot. Now let the discrete r andom variable gi be the number  

of class-/ messages entering the system during the tagged slot before the arrival ins tant  of the 

tagged message. Then,  the P G F  Gi(z) of gi is given by 

A(z) - 1 B(z)  - 1 
G l ( z ) - -  [La(z) - 1]T~(1)' G2(z) = [L2(z) - 1]T~(z)' (18) 

Since 

it follows tha t  

c (i) = r (i) + gi, (19) 

A(z) - 1 B(z)  - 1 
C(1)(z) : [Li(z)  - llT~(1) R( z ' l ) '  C(2)(z) = [L2(z) - 1]T~(1) R(l 'z)" (20) 

D.  S y s t e m  O c c u p a n c y  a t  R a n d o m  T i m e  P o i n t s  

To investigate the probabil i ty distr ibution of the random variable q(i), we must  have a more 
detailed description of the exact  location of  each arrival instant  within a slot. The  position of each 

arrival instant  within the slot is assumed to be i.i.d, continuous random variable. The  posit ion of 

an arrival instant  within a slot is characterized by specifying its distance Pi fl'om the beginning of 
the slot. Let Pi(O) be the corresponding cunmlative distr ibution function. Consider an a rb i t ra ry  

continuous t ime instant  t and refer to the slot to which t belongs as tagged slot. Let the r andom 

variable mi be the number  of class- /messages entering the system during the tagged slot before t. 

Then,  the P G F  Mi(z) of m., is given by 

~0 I M~(z) = T~(i - Pi(O) + Pi(O)Li(z)) dO, (2i) 

for i = 1, 2. Since the system occupancy  observed at random time points can ,low be obtained as 

q(i) = r(i) 4- mi, (22) 

it thus, follows that :  

#(z, w) = n(~, w)M,(z)M2(w). ( 2 3 )  

5. U N F I N I S H E D  W O R K  A N D  S Y S T E M  T I M E  

Let w(k i) be the unfinished work of class-/ at the end of slot k. Then,  w (i) is given by 

rt (k i ) 

(J)  w ( i ) =  h~: i) + ~ si , 

j = l  

(24) 

AJ) . , n ;  i), are for i = 1, 2, where ~.~ , j = 1 ,2 , . .  mutual ly  independent  with the same dis t r ibut ion 
as s.,. Hence, the joint P G F  W(z,  w) of the unfinished works is 

w(z,  ~) = P(z, s,(~), ~, s~(~)). (25) 
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Now, the system time of the message is studied. Let us refer to the arrival slot of a tagged 
message as a tagged slot and let v,~ denote the system time of the tagged class- /message.  Then, 
the random variable vi can be expressed as follows: 

+ f '  
Vl : ( w ( 1 ) - - 1 )  + E  s~i'+sl, 

i=1 

V 2 -= e W (1) + w (2) - 1 + + E s~i) + s2 - 1 + 1, 
i=1 i=1 

(26)  

(27) 

where fi  denotes the number of messages that  will be served before the tagged message among 

those messages arriving during the tagged slot and e(n) denotes the busy period of class-1 gen- 
erated by n slots. The P G F  V~(z) of vi is given by 

Vl(Z) = P ( z ,  S , ( z ) ,  1, 1) + (z - 1 )P(0 ,  0, 1, 1) FI(SI (Z) )SI ( z )  ' 
Z (28)  

V2(z) = P(E( z ) ,  S, (E(z)) ,  E(z) ,  S2(E(z)))  + (E(z)  - 1)P(0, 0, 0, 0) 

S2(z) 
x F,2(S,2(E(z)))A(Sa(E(z))) -E--(-~z, 

where the P G F  Fs(z) of fi is given by 

(29) 

A ( z ) - I  F2(z) - B ( z ) -  I 
Fl(z)  - (z - 1)A'(1) '  (z - 1 )B ' ( z ) '  (30) 

and the busy period e(1) is the same as that  of GeoX/G/1  queue without priority and the implicit 
formula for its P G F  E(z)  is given in [14]. 

6 .  I D L E  A N D  B U S Y  P E R I O D  

Let i* be the l e n ~ h  of an arbi trary idle period and I* (z) the P G F  of i*. Since an idle period 
will last for k consecutive slots if and only if there are no arrivals during each of the first k - 1 
of these slots and at least one arrival during the k TM of these slots, 

P [i* = k] = [1 - A(O)B(O)][A(O)B(O)] k- l ,  k >_ 1, 

/ * ( z )  : [1 - A ( 0 ) B ( 0 ) ] z  
1 - A(O)B(O)z " 

Let e* be the length of an arbi trary busy period and E*(z)  the P G F  of e*. After an idle period, 
a message enters service introducing a new busy period. Let ei indicate the length of the t ime 
period during which the server is occupied by a c l~s - /message  and its successors, and Ei(z)  the 
P G F  of ei. The whole busy period can be partit ioned in a* + b* consecutive sub-busy periods, 
where a* and b* denote the number of arrivals of cl~s-1 and class-2, respectively, during the last 
slot of an idle period. Thus, 

a* b* 

j = l  j = l  

where e} j) are mutual ly independent with the same distribution as e/ for each i. Since the joint 
P G F  of a* and b* is 

A ( z ) B ( w )  - A(0)B(0) 

1 - A ( 0 ) B ( 0 )  ' 
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the P G F  E*(z )  is given by 

A ( E I ( z ) ) B ( E 2 ( z ) )  - A(0)B(0) 
E*(z )  = 1 - A(0)B(0)  (34) 

Since the sub-busy  period ei s tar ts  with the service t ime si, the period ei can be expressed as 

Sl 1) S} 2) 

2 
j= l  j = l  

(35) 

where S} j) denotes the  n u m b e r  of class-j  messages enter ing the system dur ing  si. Thus ,  

Ei ( z )  -- S i ( z A ( E I ( z ) ) B ( E 2 ( z ) ) ) ,  (36) 

f o r / =  1,2. 

7. C O N C L U D I N G  R E M A R K S  

This  paper  considered a G e o X / G / 1  queue with preemptive resume priority. At various obser- 

vat ion ins tant ,  an analysis  of the joint  system occupancy d is t r ibu t ions  was provided by means  

of probabi l i ty  genera t ing  funct ions and  supp lementa ry  variable method.  Fur ther ,  we ob ta ined  

implici t  formulas for the probabi l i ty  d i s t r ibu t ion  of the system t ime and  the busy period. 
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