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Abstract—This paper considers a GeoX /G/1 queue with preemptive resume priority. Service
times of messages of each priority class are i.i.d. according to a general distribution function that
may differ between two classes. The analysis is based on the generating function technique and
the supplementary variable method. We derive the joint system occupancy distributions at various
observation instant and provide the analysis of the system time and the busy period. (© 2001 Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION

Priority mechanisms are an invaluable scheduling method that allows messages of different classes
to receive different quality of service {QoS). For this reason, the priority queue has received
considerable attention in the literature. Two well-known priority disciplines in queueing literature
are the nonpreemptive and the preemptive disciplines. The first was introduced by Cobham [1].
Under this rule, if a message of high priority arrives when a message of low priority is being
served, it waits until the message in service completes its service. The second assumes that a
message of high priority has a right of replacing the message of low priority from the server.
Since messages of high priority interrupt the service of a message of low priority, the message of
low priority on its re-entry may either resume its service from the preempted point, or repeat its
service. The former is called the preemptive resume rule and the latter is called the preemptive
repeat rule. Obviously under the resume rule, the service time of a message of low priority upon
re-entry gets reduced by the amount of time the message has already spent in service.

Let us review some related papers. Many authors have studied priority queueing systems.
Cobham [1], Lee (2], Machihara [3], and Sugahara et al. [4] have studied continuous-time priority
queues. Numerous examples of discrete-time queucs can be found operating within present. com-
puter and communication systems. The analysis of such discrete-time priority queues is therefore
very important and numerous studies of it exist within the literature. Choi et al. [5,6], Hashida
and Takahashi [7], Khamisy and Sidi [8], and Takine et al. [9] have studied discrete-time priority
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queues, where service times of messages of all classes are assumed to be constant and equal to
the slot size. As a result, there is no distinction between the nonpreemptive and the preemptive
priority systems. Sidi [10] and Sidi et al. [11] have analyzed the discrete-time structured input
queue under nonpreemptive priority rule, where the service time is to be constant for all classes.
Khamisy and Sidi [8] considered discrete-time priority queueing systems with two-state Markov
modulated arrivals, where the service time is one slot for all classes. Gupta and Georganas [12]
analyzed the input queueing switch. They modeled each input queue as a two-class Geo/G/1
quette with nonpreemptive priority and obtained the mean delay of two priority classes, respec-
tively. Schorams [13] derived iterative algorithms that permit the evaluation of the steady state
waiting and system time probabilities for two different priority classes in a discrete-time queueing
systeml.

This paper considers a discrete-time Geo™ /G/1 queue accepting two classes of messages with
preemptive resume priority. Bruneel and Kim [14], and Hashida {15} also studied the priority
qucue, but they ounly just obtained the marginal probability generating function (PGF) for the
queue size of each priority classes. Using the generating function technique and the supplementary
variable method, we derive the joint PGFs of the system occupancy distributions at various
observation instant and provide the analysis of the system time and the busy period. Note that
the supplementary variable method has suecessfully been applied to various queueing systems.

2. MODEL

There are two priority classes of messages; class-1 and class-2. A higher priority is assigned
to class-1. Messages in each priority class arrive to the system in accordance with correspond-
ing batch geometric process [6,16). Let A(z) (respectively, B(z)) be the PGF of the number a
(respectively, b} of class-1 (respectively, class-2) messages that arrive in each slot. The number
of messages of cach class that arrive in the same slot is independent of each other. The sys-
tem consists of two separate buffers of infinite capacity to accommaodate arriving messages of
corresponding priority classes.

There is a single server. Messages are served under the preemptive resume priority discipline.
Thus, messages of high priority interrupt the service of a message of low priority and the message
of low priority on its re-entry resumes its service from the preempted point. Messages in the
same class are served in FIFO order. The service times of messages in each priority class are
independent and identically distributed in accordance with a general probability distribution
which may differ between two priority classes. Let 5;(z) denote the PGF of the service time s;
for class-i, 3 = 1, 2. All messages arriving to the system are assumed to be eventually served, i.e.,
A'(1)S1(1) + B’(1)S5{1) < 1. The service times and the arrival processes arc also assumed to be
mutually independent.

Before proceeding to the analysis, we define some random variables. Let a random variable n}j
indicate the number of class-i messages in the queue {excluding a possible one in service or in
limbo) at the end of slot k. A supplementary random variable hgj) is defined as follows: hi_ﬂ
indicates the remaining service time if a class-i message is in service or in limbo at the end of
slot k, and otherwise hgf) =0. Then {(h(.” , nf), hf), nf))} constitutes a Markov chain embedded
at the end of each slot.

)

3. EMBEDDED MARKOV CHAIN

If we denote by ai and b, the numbers of class-1 and class-2 messages, respectively, entering
the system during slot k, then the system under consideration evolves as follows.

(a) A = p < 0.

+
1) 1
n§C+1 = (ni) — 1) b Qky1s
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(2) _ (”(2) - 1)+ +bgr, iy =0,
Pyl = (2) + b1, if n(l) > 0;
0 0, it n =0,

k1 { sy —1, if n(l) > 0,

o 0, if n(l) >0 or n(z) =0,

k+1*{52-1, ifnk Oandn > 0.

(b) I AN =0 and A
+
nilll = (’nf) - 1) + G413

2 2
Wy =2 i

e (1)
WD {U, ifng’ =0,
k+1

s1—-1, itnl? >0

(2) hf) -1, if n(]) =0,
if n ) > 0.
(e) If A > 0

(1) ()

Npiq = T et 15
ngl =1, 12y bi+1;
h§c1+1 = h(l) -1
el = ki

Now, let us define Py(x,z,y,w) as the joint PGF of the state vector (h(1 . ),h(z), nf)), valid
at the end of slot & G e
Pz, z,yw)=E {xh 2 Y w ] . (1)

The next step is to derive a relationship between Pi(x,2,y. w) and Pri1(®, 2,9, w) by using the
above state equations. We praceed as follows:

1 s 1
Prante. ) = 4B |2 A )+ { 2 - 2 Aoz 0
' (2)
1 5= S. 1 Y
+ {— - —I—(Q} P.(0,0,y,w) + {A__z(y) - _} DP:{0,0,0,w) + { 2(y)}Pk(0 0,0, 0)]
Y Tz yw Y yw
A steady-state joint PGF is defined as
Plr,z,y,w) = lim Pz, z,y,w), ‘ (3)
k—oo

provided that the system reaches a steady state. Letting & — oo in equation (2) and solving
for P(x, z,y,w), we get

Silz) _ 1

ix — A(z)Bw)|P(z, z,3,w) = zA(2)B(w) H - ;} PO, z,y,w)

+{l - S—l(z—)}P(O,O,y,w) + {—Sﬁ@ - %}P(0,0,0,w} + {1 ~ —‘S‘;(TM}P(O‘O,O,O)] .

y Tz yw

(4)
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Since [A(z)B(w)| < 1 and Pz, z,y,w) is analytical function in the closed polydisk |z[, |y, |z,
iw| < 1, the right-hand side (RHS) of equation (4) must be zero for 2 — A(z)B(w). Therefore,
choosing = = A(z)B(w) in equation {4}, we have

zA(z}B(w)

(=~ 8 (A(2) B} P(0, 2y, w) = [ :

_ s (Acz)B(w))} P(0,0,y,)

+zA(z)B(w) ()

y

S,
[ 2ly) _ 1] P(0,0,0, w) + zA(2) B(w) [1 - M} P(0,0,0,0).
w yw
We will show thas, for a given w with |w| < 1, 2 — §,(A(2)B(w)) = 0 has a unique root z = 2*(w)

in |z] < 1. We define f(z) = z and g(z} = —5,(A(z)B(w)). Substituting z = zo + Az for |zg| = 1,
| & z| < 1 and |w| < 1, we have g(zo + Bz) = gzp) + Az[did(zi}}zzm + o(/\z) and

Nz {df’i(z)J

l9(z0 + Az)| < |g(20)| +

+o(Az). (6)

Since |g(z0)| = [Si{A(z0)B(w))| £ 1 and |[%2 ], < A'(1)S)(1), we get |g(zo + A2)| <
1+ A'(1)S](1)] A z[ + o(Az). Hence, on |z| = 1 + ¢ for a small positive real e |g{z)] < 1+
A'(1)81(1)e + o(e) and obviously |f{z)| =1 + ¢. Since [f(2)| > lg(2)] on lz| = 1 + ¢, by Rouché’s
theorem {16], f(z) and f(z) + g(z) have the same number of zeros inside |z| = 1 +¢. Since f(z)
has a uniquc zero inside |z] = 1+ ¢, 2 — S {A(2)B(w)) = 0 has a unique root z = z*{w) in the
closed disk |z{ < 1. Since P(0, z,y,w) is analytical function for |z} < 1, the RHS of (5) must be
zero for z = z*{w). Thercfore, we have

[y — A (2" (w)) B(w)] P(0,0,y,w)

= A(2* ()} B(w) H%ﬁﬂ - 1} P(0,0,0,w) + {y - S—Qj)y—)}P(O,U,U,O)} .

(7)

If we choose y = A(z*(w))B(w) in equation (7), the RHS of equation (7) must then vanish
for |y|, |w| < 1, which yields

wA (z*{w)) B(w) — Sy (A (z"(w)) B(w))

P0,0,0,w) = F(0,0,0,0). 8
(©.0.0.0) w - 5 (A0 (w)) B(w) (©.0.0.0) ®
By taking the derivative with respect to z of equation (4) and putting z = z = y = w = 1, we
got

£{0,0,0,0) =1 - A'(1)51(1) - B'(1)S5(1). (9

Hence, the PGE P(rx, z,y, w) is determined.

4. SYSTEM OCCUPANCY

In this section, we will derive expression for the PGFs of the system occcupancy measured at
four different sets of tine instant. More specifically, we will study the following steady state
random variables:

i = queue occupancy of class-i messages at random slot boundaries,

rU' = system accupancy of class-i messages at randomn slot boundaries,

} . . .
dgl’ = system occupancy of class-i messages at departure times of class-j messages,
d" = system occupancy of class-i messages at departure times of any message,

= system occupancy of class-i messages at arrival times of class-¢ messages,

HE

9 = system occupancy of class-i messages at random time points.

S
Il
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The corresponding PGFs are indicated as

N(iz,w)=E [z"(l)w"m] , Riz,w)=FE [z’"“}wrm] , (10)
Diz,w)=FE [zd;nwdﬁﬂ} , Dzw)y=FE [z”!mwdm] , (11)
CH()=E [zcm] , Qz,w)=FE [z“qum} , (12)

respectively.

A. System Occupancy at Random Slot Boundaries

According to our developments in the previous section, N(z, w) can be obtained for P(z, z,y, w)
hy simply putting z =y =1
N(z,w)= P{1,z,1,w). (13)

Since
r® =nl 4 min (hm,l) ) (14)

for i = 1,2, the joint PGF R(z,w) is given by
R(z,w) = (1= 2)(1=w)P(0, 2,0,w) +w(l-2)P(0, 2, 1,w) = 2(1—w)P(1, 2,1, w)+ 7w P(L, 2, 1, w).

B. System Occupancy at Departure Times

The random variable d;i) can be expressed as
dV =i ro;  dP =aP vl =a 4 =ulT 4, (15)

where ”1) denotes the numbel of class-i messages in the queue at the end of an arbitrary slot

with A = 1, and u2 ) denotes the number of class-2 messages in the queue at the end of an
arbitrary slot with h{® =1 and n{!} = 0. Therefore, we obtain

L-SiAD) - S(B' (L)  w—1  wA((w)) Blw) — S (A" (w)) Bw))
A'(1)[1 — 51(0)) w w — Sy (A(2*(w)) B{w))
y [1 __#AE)Bw)  A(M(w)) Bw) {5{(0) _ (1 - A(G)B(w)) }]
z— Sl(A(Z)B(w)) 1-A((w))Blw) | = z-5(A(z)Bw)) )]’

R NS 540 .
FETSE (A B - 22 Po.00w)

{Se.f; ) 1}}3(0,0,0,0)]’

P {h(” = 1} Dy(z,w) + P{h(z) =1,n = D} Dy(z,w)
PR =1} + P{p® =1,n() =0} '

Dl(sz) =

Doz, w) =

and

Diz,w) = A(2)B{w)

(16)

C. System Occupancy as Seen by New Arrivals

To investigate the probability distribution of the random variable ), we need more detailed
information on the way in which messages enter the queueing system. First, the numbers of
arrival instants falling in the consecutive slots for each class are assumed to be independent and
identically distributed. Let ¢; be the number of arrival instants of class-¢ in one slot and T;(z)
the PGF of ¢;. Next, the numbers of messages entering the system at each arrival instant are
also assumed to be independent and identically distributed. Let {; be the bulk size of class-i
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messages at each arrival instant and L;(z)} be the PGF of {;. Then, the PGFs A(z) and B(z) can
be obtained from
A(z) = Ti(L1(2)},  B(z) = To(La(z}). (17)

Consider a tagged message that arrives at the system. Let us refer to the slot in which its arrival
instant is situated as the tagged slot. Now let the discrete random variable g; be the number
of class-i messages entering the system during the tagged slot before the arrival instant of the
tagged message. Then, the PGF G;(z) of g; is given by

_ Az -1 . B{z) -1
“E=moana T e ome 18
Since
RO CI (19)
it. follows that
cW(z) = Alz) - 1 R(z,1), 9= Blz) 1 R(1,z). (20)

(Ly(z) = UT7(1) L) - 1T5(1)

D. System Occupancy at Random Time Points

To investigate the probability distribution of the random variable ¢(*), we must have a more
detailed description of the exact location of each arrival instant within a slot. The position of each
arrival instant within the slot is assumed to be i.i.d. continuous random variable. The position of
an arrival instant within a slot is characterized by specifying its distance p; from the heginning of
the slot. Let P;(#) be the corresponding cumulative distribution funetion. Consider an arbitrary
cantinuous time instant ¢ and rcfer to the slot to which ¢ belongs as tagged slot. Let the random
variable m; be the number of class-{ messages entering the system during the tagged slot before t.
Then, the PGF M;(z) of m; is given by

M(z) = /0 11— P6) + BO)L(2)) b, (21)

for i = 1,2. Since the system accupancy observed at random time points ¢an now be obtained as
gV = 4oy, (22)

it thus, follows that:
Qz,w) = Rz, w)M{z) My {w). (23)

5. UNFINISHED WORK AND SYSTEM TIME
Let wl(:) be the unfinished work of class-i at the end of slot &. Then, w,(:) is given by

nti
ny,

)
w =n+ 3 s (24)
j=1

for : = 1,2, where S,Sj), i=12,... ,nfj), are mutually independent with the same distribution

as s;. Hence, the joint PGF Wz, w) of the unfinished works is

Wz, w) = P(z, S1(z), w, Sz (w)). (25)



Discrete-Time Geo™ /G/1 Queuc 249

Now, the system time of the message is studied. Let us refer to the arrival slot of a tagged
message as a tagged slot and let v; denote the system time of the tagged class-i message. Then,
the random variable v, can be expressed as follows:

v = (w I 1) + Z +b1, (26)
vy =€ ((wm + 2 ) + Z sy s Z s(” + 82 — 1) +1, (27)

where f; denotes the number of messages that will be served before the tagged message among
those messages arriving during the tagged slot and e(n) denotes the busy period of class-1 gen-
erated by n slots. The PGF V;(z) of v; is given by

P(z,5(2),1,1) + (z - 1)P(0,0,1,1)

P(E(2), 81(E(2)), B(z), S2(E(=))) + (E(z) — 1)P(0,0,0,0)
E()

Vi(z) =

F1(5:1(2))51(2), (28)

Valz) =

(: ) {29)
X Ey(Sy(E))A($1(E(2))) _;( B
where the PGF Fj(z) of f; is given by
A(z) -1 L B(x)-1
e (A e e) .

and the busy period (1) is the same as that of Geo™ /G /1 queue without priority and the implicit
formula for its PGE E(2) is given in [14].

6. IDLE AND BUSY PERIOD

Let ¢* be the length of an arbitrary idle period and I*(z) the PGF of i*. Since an idle period
will last far k consecutive slots if and only if there are no arrivals during each of the first & — 1
of these slots and at least one arrival during the k" of these slots,

P[i* = k] = 11 — A(0)B(0)){A(0)B(0)* k>1,
L e (OL:ICIES
Iz) = 1 - A(0)B(0)z

Lot e be the length of an arbitrary busy period and E*(z} the PGF of e*. After an idle period,
a message enters service introducing a new busy period. Let e; indicate the length of the time
period during which the server is occupicd by a class-i message and its successors, and E;(z) the
PGF of e;. The whole busy period can be partitioned in a* + b* consecutive sub-busy periods,
where a* and b* denote the mumber of arrivals of class-1 and class-2, respectively, during the last
slot of an idle period. Thus,

a” b
et=y e =3 e (33)
i=1 =1
{3)

where ;"' are mutually independent with the same distribution as e; for each i. Since the joint

PGF of o* and b* is
A{z)B(w) — A(0)B(0)

—A()BO)
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the PGF E*(z) is given by

A(£1(2))B(E2()) - A0)B(0)

E(z) = 1 — A(0)B(0)

(34)

Since the sub-busy period e; starts with the service time s,, the period e, can be expressed as

S(l) S;'Z]

S Ay (35)
j=1 =1

where ng ) denotes the number of class-7 messages entering the system during s;. Thus,
Ei(z) = 8.(zA(E1(2)) B(E2(2))), (36)
for i =1,2.

7. CONCLUDING REMARKS

This paper considered a Geo™ /G/1 queue with preemptive resume priority. At various obser-
vation instant, an analysis of the joint system occupancy distributions was provided by means
of probability generating functions and supplementary variable method. Further, we obtained
implicit formulas for the probability distribution of the system time and the busy period.
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