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Abstract: A discrete-time priority queueing
system is studied, in which two different classes of
fixed-length packet-trains arrive according to
independent batch geometric streams. The
packets in each packet-train arrive at the rate of
one packet per slot (train arrivals), resulting in a
correlated arrival stream. The service time of one
packet is deterministic of one slot. The
motivation for the work comes from ATM
networks with diverse traffic sources and
correlated packet arrival stream. Using the
probability generating function method, the joint
distribution of queue lengths and the waiting time
distribution are obtained for each class.
Numerical results are presented. Comparision is
made with the case of ‘batch arrivals’, where all
packets of a packet-train arrive simultaneously at
the buffer.

1 Introduction

We analyse a discrete-time priority queueing system
with fixed-length packet-train arrivals. As in usual dis-
crete-time systems [1-4], the time axis is segmented into
equal intervals of unit duration called slots. The length
of one slot is the time interval required to transmit
exactly one packet. It is assumed that arrivals and serv-
ices occur at slot boundaries; arrival and service com-
pletion of a packet occur just before slot boundaries.
The packets arrive by fixed-length packet-train of size
m [5]; if the leading packet of a message containing m
packets arrives in the current slot, the remaining m — 1
packets of that message will arrive in the next m — 1
slots.

In ATM networks [3], all information is transmitted
by fixed-size packet of 53 bytes. Thus, ATM networks
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can usually be analysed by a discrete-time model. The
discrete-time queue has been investigated fairly exten-
sively. The presence of packet-train arrivals in input
streams of ATM networks comes from the segmenta-
tion of large data messages into small cells. As an
application for an ATM multipath self-routing switch
[6], Xiong and Bruneel [5] considered a discrete-time
single-server queue with a ‘deterministically correlated’
arrival process, called a fixed-length packet-train
arrival process. The messages are concretely segmented
into packets, and the number of packets in a message is
assumed to be constant. Thus, each message looks like
a fixed-length packet-train which enters the buffer at
the rate of one packet per slot. Xiong and Bruneel
obtained [5] an explicit expression for the probability
generating function of the queue length. Wittevrongel
and Bruneel [7] extended this model to a variable-
length packet-train model.

ATM networks support diverse services such as
voice, data and video, which require different QoS
requirements. For example, data is loss-sensitive but
delay-insensitive, whereas voice is delay-sensitive but
loss-insensitive, In ATM networks, one of the most
important problems is to meet the QoS for all traffic,
e.g. the delay and loss requirements for real-time and
non-real-time traffic. One method of solving this prob-
lem is the use of priority control [1, 3, 4]. In this paper,
we consider two classes of message (high and low pri-
ority) with fixed-length packet-train arrivals. High pri-
ority packets may be considered as real-time traffic
such as voice, and low priority packets may be consid-
ered as a non-real-time traffic such as data. We extend
the model of Xiong and Bruneel [5] with only one class
to the model with two HOL priority classes.

Using the generating function method, we analyse
the discrete-time priority queue with fixed-length
packet-train arrivals and obtain the joint queue length
distribution of high and low priority. The waiting time
distribution for a packet in each class is derived explic-
itly in closed form. Since a message can be regarded as
a fixed-length packet-train, the waiting time distribu-
tion for a message in the case of ‘FCFS for messages in
the same class’ is also given.

»

2 Analytical model description

We consider a discrete-time single server priority queue
with two classes of high priority and low priority. Each
class arrives by packet-trains with a fixed size of m
packets; if a leading packet of a message containing m
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packets arrives in the current slot, the remaining m — 1
packets arrive consecutively in the next m — 1 slots. The
packets are accommodated in the buffers with infinite
capacity. The service time of a packet is one slot. We
assume that the numbers of arrivals of leading packets
of high priority and low priority in a slot are independ-
ent and identically distributed with respective probabil-
ity generating functions 4(z) and B(z). We refer to high
and low priority as type-1 and type-2, respectively.

Let the random variable ay , (tesp. by ), 1 < k < m be
the number of packet-trains of type-1 (resp. type-2)
that generate the kth packet of a packet-train during
slot . It is obvious that the following relations hold for
2<ks=sm

Gkyntl = Qk—1m,  Dknt1l = Dp—in (1)
Let 4,41 and b,.; be the total number of packets of
type-1 and type-2 entering the corresponding buffer in

slot n + 1, respectively. a,.; and b,,; can then be
expressed as

m m
An+41 = E Oknt1 = OG1,n4+1 + § Ak—1,n
k=1 k=2

m—1
= Z a1,n+1—1 (2)

=0

m m
bpy1 = Zbk,n—l—l =bi,py1 + Z be—1,n
=1 k=2

m—1
= brnti-i (3)
=0

where a; 41 ;and by ey 5, 1= 0, 1, ..., m — 1, are inde-
pendent and identically distributed with the common
probability generating function A(z) and B(z), respec-
tively. From eqns. 2 and 3, the offered load p; and p,
for each type in a slot is given by p; = mA4’(1) and p, =
mB'(1). Let the random variable Ny(n) (resp. Ny(n)) be
the number of packets of type-1 (resp. type-2) accumu-
lated in the corresponding buffer just after slot #. By
considering the evolution of the system in two succes-
sive slots, we then have a set of equations:

Ni(n+1) = (Ni(n) = 1)F + anp (4)

_ (Vo) = )F + bpys, if Ni(n) =0
Nao(n+1) = { No(n) + by, otherwise
)

where (x)* = max(x, 0)
It is easy to see that the process
{(al,n7 R am~l,n7 Nl(?’l), b1,7L7 cee >bm—1,n7 N2(n)) »
n > 0}
(6)
is a 2m-dimensional Markov chain. Below we derive
the joint queue length distribution in the steady-state.

3 Joint queue length distribution

We introduce the 2m-dimensional joint probability gen-
erating function of the random variables a; ,, ..., @y 1,
Nl(l’l), bl,m veey bmfl,n and Nz(”l):

Rn(xlj" ')ym—1722)

me—1,n bi,m m—1,n
=EFE [wfl’"...wa t z{vl(n)yll’ I it zé\,2<n)]

(7)

3 Tm—1,21,Y1, - -
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From eqns. 1-5, it follows that
Rpqi(z1, .. yYm—1,22)
—F [xilll,n+1 xam—l,n+1zf\/1(n+l)y§71,n+1 L

R )

s Tm—15,%1, Y1y - -

bm—1,n+1 Na(ntl)
e Ym—a )

1
= A(z121)B(y122) [Z—Rn(mzb oy Tm_121,21, 21,
1

Y222, ... 7ym—1z2722722)
1 1
+ <— - —> 2 [(yzzz)bl’”
29 21

b bm—1,n Na(n
o (Yme129) B 2T 2 ()

+ (1 - i) P{N:(n) = 0, Na(n) = 0}}

1{N1(n>=0}]

(8)
Note that P{Ni(n) = 0, Ny(n) = 0} is the probability
that both buffers are empty just after slot n. Since
Ny(n) = 0 implies that ¢, = 0, 1 < k < m, eqn. 8
becomes

Rn+1($1,‘. 7ym—1722>

1
= A(l‘lzl)B(y122> |:Z—Rn(x’221, PN
1

5 Tm—1,215Y1l,s - - -
sy Tm—121,%1, %1,
Y222, .+, Ym—1%2, %2, Z2)

1 1
+ <~— — —) R,(0,...,0,y220, ..., Ym—122, 22, 22)
z9 Z1
1
2

(9)
We assume that p; + p, < 1 s0 as to reach the steady-
state. Letting » — o in eqn. 9, we have

R(ml,. .

= lim R,(z1,...
T~ 00

7?Jm—1,22)

»Ym—1, 22)

3 Tm—1,21,Y1,- .-

y Tm—1, %1, Y1,y -

1
= A(z121)B(y122) L—R(wzzb o Bne121, 21, 21,
1
Y222, .-y Ym—122, 22, Z2)

1 1
+ <_ - _> R(07 s >0>y2z27 cee 7ym~1Z2,Z2722)

(10)
where p, denotes the probability that both buffers are
empty at an arbitrary slot in the steady state.

Let N(zy, z,) be the joint probability generating func-
tion of queue lengths in the steady-state. Setting x; = ...
=Xy =Y = ... = Ypy = 1in eqn. 10 we then obtain

N(z1,22) = R(1,...,1,21,1,...,1, 29)

- A(zl)B(ZQ) I:ZLR(ZI, ..

1

'7Z17227"'322)

+ (__7) R(0,...,0,2s,...,2)

(11)
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Next, we find out R(zy, ..., 21, z3, ..., 25) and p,. Define
the probability generating function T;(z,, z,) as

Tk(Zl,Zg) ER(:El,...,xm_l,zl,yl,...,ym_l,ZQ)
1<k<m-1
where

r1 = =Tm—Lk = Z{c

Tm—k+1 =21 5" Tm—1 = 21
Yr == Yok =25

Ym k1 = 25 5y Yme1 = 22

(12)

Then T(z;, z5) = R(zy, ..., 21, 22, s 23) @nd T7(0, z,) =
R(O, ..., 0, z, ..., zp). From eqn. 10, Ty(z;, zy) can be
written in the following recursive form:

1
Ti(21,22) = A(zFTHY B8+ Z—lTk_H(zl, z3)

1 1 1
— -\ T .
+ (ZQ Zl) k-}—l(O: 22) + (1 Z2> po:i )

1<k<m-2

(13)

1
ﬂmﬂaﬂﬂ:A@mB@ﬁ{zﬂmﬂhﬂﬂ

(2Dt (-2
(14)

If we solve eqn. 14 for T, 1(z;, z), we then have

Tm—1(2’1,2’2) =
A7) B(25")[21 (22 — D)po + (21 = 22)Trm—1(0, 22)]
zlz1 — A(2]™) B(25")]

(15)
By Rouche’s theorem, there exists a unique solution z;
= zo(z5) (= zg) of zy = A(Z] )B(Z% ) in |zy] < 1 for each
z, with |z5| < 1. The solution zy(z,) is expressed as

oo

B )

w(e)(= 20) = 3, =P T AN
n=1 z1=0
(16)
T,,1 (0, z,) 1s then given by
zo(zg — 1
Tn-1(0, 22) = zo(z2 — )po (17)
29 — 20

From eqns. 14 and 17, we have
Tm—1(21,22)
_AGEP)B() [z (2= 1)po + (21— 25) 222
2zl — A(21") B(23")]
AP B (22 = o [21 + 222

2oz — A1) B()]
A(e)B(zy) 4 lazzlazlp,

e = AGTVB ()]
_ (21 = 20)AGT) B(25) (22 — Do
(22 — Zo)[Zl — A(Z)B(25)]
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Therefore, using the eqns. 13, 17, and 18, we can derive
Ty(z;, z,) and T,(0, z,) recursively. Finally, the joint
probability generating function N(z;, z,) is given as

N(z1,29) = R(1,...,1,z1,1,...,1,29)
1
= A(Zl)B(ZQ) |:Z—R(217 cey B15 22, . .,Zz)
1

1 1
+ (i——-> R(O,...,O,Z‘ZM",ZQ)

Z9 Al

“(1-2))

= A(z)B(2) [;11—T1(Z17Z2)
+(%»i)ﬂm¢ﬁ+@—i>m]
(19)

The unknown quality p, remains to be obtained. By let-
ting z; = z, = z in eqn. 15, we obtain

Tos(e2) = S @0

By taking z = 1 in eqn. 20 and using L’Hopital’s rule,
the unknown quality p, is given by py = 1 — p; — ps.

4 Waiting time analysis

We derive the waiting time distribution for a packet
and a message of each type. We define the waiting time
of a packet as the time period between the end of the
packet’s arrival slot and the time instant at which the
transmission of this packet is about to start. The wait-
ing time of a message (packet-train) is defined as the
time period between the end of the slot during which
the first packet of a message was generated and the
time instant at which the transmission of this packet is
about to start.

The waiting time for message is derived under the
assumption that the service order of messages in the
same class is FCFS and the messages arriving in the
same slot are served randomly.

Since the packets of type-2, do not interfere with the
waiting time of a type-1 packet the waiting time distri-
bution of type-1 can be obtained as in the work by
Xiong and Bruneel [S]. Hence, we focus on the waiting
time analysis of type-2.

4.1 Waiting time distribution of a type-2
packet

Here we derive the waiting time W, of an arbitrary
tagged type-2 packet. Let U be an initial delay consist-
ing of the following time intervals:

(1) the unfinished work at arrival slot of a tagged type-
2 packet; here the unfinished work is the time interval
required to service all packets in the system, except for
the packets arriving during the arrival slot of the
tagged packet.

(i) the service times of type-1 packets, which will ‘be
arrived’ consecutively by the arrived leading packets
until the arrival slot of the tagged packet.

(ii1) the service times of packets, which will be served
first among packets arriving during the arrival slot of
the tagged packet.

To obtain the waiting time distribution of the tagged
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type-2 packet, we first need to calculate the probability
distribution of this initial delay U. Let ¢(iy, ..., i, j1, I
j») be the probability that there are j; type-1 packets
and j, type-2 packets at the beginning of arrival slot of
the tagged type-2 packet. There also are i, kth packets
of the type-1 packet-trains and i type-2 packets arriving
in the slot where the tagged type-2 packet arrives. Let
Q(X1, .oy Xy 21, ¥, 25) be the corresponding joint prob-
ability generating function of ¢(iy, ..., iy, ji» & jo)- The
probability distribution of U is then given easily by

P{U—k}hz Z iGEE

=0 i=k4+1~!

. 5ZM7jl,Z .72)

P2

(21)

where [ = (j; + o — )T + mip + (m = iy + ... + i,
Thus, we can calculate the probability generating
function U(z) of the random variable U as follows:

Uz) = i P{U = k}2*

k=0

1 Qe &
:p—zz Z q'lzl, . ’Lm>.7171 .]2)

2 §=0 1=0 i=k-+1—-1

- Z Z;; _216”17 iy g1, 6y J2) 2T
- E;(—zl—T) FEEREE
7Q(zm’ “7Z7Z717Z)}
+ ( %) {Q(z™,...,2,0,2,0)
—-Q(z" ,,2,0,1,0)}}
e E{W S 20%2,2)
-Q=",...,2,2,1,2)}
(1 - —) {A(z™)B(2)po — A(zm)po}}
(22)

Now Q(x1, X2, ...y X, 21, ¥, Z9) can be expressed by the
probability generating function R(xy, ..., X1, Z1, P15 ooes
Vm-1, Z») as follows:

Q(x171:27 s Tmy 21, Y, Z?)
- A(wl)B(y)R(l?v ey Tms R Yy Y, ZQ)
(23)
Therefore, eqns. 22 and 23 we obtain U(z) as follows:
1
U — | —A(z
()= gy [ 346"
X {B(2)R(z™ .. 2,2,2,...,2,2)
—R(z"7Y, 2,2, 1,...,1,2)}
+(1-1) ACmm(B() - 1)
(29

From eqn. 10, it follows that
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R(=""4 00,41, )

:A(zm)B(z){gR(zm L 22,2, ..,2,2)
“(1-2)m)

:@@R(szl,.”,z,z,z,...72,,2)

4B (1-1) o
(25)
By substituting eqn. 25 into eqn. 24, we obtain
U(z)
1

1 m .
- M[;A(Z ){B(z)R(z Lz, %)

= e AEmEe (1- 427)
XR(z™Y, 22,0, 2)
+ (1 - 3) A(ZM){B(Z«) -ty )B(z)} }

(26)
Finally, R(z™!, .., z, z, z, .., 2, z) remains to be
derived. As in Section 3, define the probability generat-
ing function Z,(z) as follows:

Zk(z) = R(zm_l7 A 7z7 Z7yl7 A 7ym717z)7
1<k<m-1
(27)
where y; = .. =V = 25y = A Ly = 2

By eqn. 10 we then obtaln a recursive form for

Zi(2):
2,(2) = AEBE) [0+ (1- 1) o
1<k<m-—2

Zm_1(z) = A(z™B(z™) Ezmﬁl(z) + ( - i)po}
(28)

From eqn. 28, Z,,_(z) is given by
_A(E™)B(z™)(z - 1)
Zma (@) = = T B

We also can derive Zi(z) recursively by eqns. 28 and
29:

(29)

Tz = AEBED 5
+AEBE) (1- 1) o
AT [ACMDI) 1

z z
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By substituting Z;(z) = Rz"™, ...,
eqn. 26, we finally obtain

U(s) = PACT) [A<zm>m-l (1 B

D2 am—1

1 m
< = aeBeE 1P

m m—2 myh P+l
A F A
h=0 =1 (31)

Service of the tagged type-2 packet is delayed by the
arrival of type-1 message (packet-train) with initial
delay U. To derive the delayed busy period by type-1
messages, we assume that the service of type-1 mes-
sages is FCFS. Let 0 be the delayed busy period gener-
ated by type-1 messages arriving during a slot. We can
easily obtain the following equation in the same way
that we derive the busy period of M/G/1 queue in the
continuous-time case [8]:

0=X+60 4... 46 (32)

where X is the service time of messages arriving during
a slot and 69, 63, .. are independent and have the
same distribution as 6. Since a message consists of m
packets, the service time of a message is m slots. Thus,
the generating function 6(z) of the delayed busy period
0 is given by &z) = A(z"0"(z)). Therefore, the proba-
bility generating function Wy(z) for the waiting time of
a type-2 packet is given by

Wa(z) = U(20(z)) (33)

4.2 Waiting time distribution of type-2
message

Here we derive the waiting time distribution of a type-2
message (packet-train). We assume FCFS for messages
in the same class. According to the service rule in Sec-
tion 2, the type-1 message has pre-emptive priority over
the type-2 message. Suppose a tagged type-2 message
arrives in a slot S. Let @, be the number of the kth
packet arrivals among the type-1 packet-trains cur-
rently arriving in the slot S. Obviously, 4, has the same
distribution as a;, 1 < k < m. The unfinished work U at
the beginning of the slot S + 1 for the tagged type-2

IEE Proc.-Commun., Vol. 145, No. 5, October 1998

message can be expressed by the system state in the slot
S

0=(N1 +N2—1)++m&1+(m—1)&2+
+8m +(Mm—1b 4+ by +mf
(34)

where f is the service order of the tagged type-2 mes-
sages among the type-2 messages arriving in the slot S
with the probability generating function F(z). The
probability generating function U(z) of the unfinished
work U can then be calculated as follows:

U(2)
- E[Z(N1+N2—1)++ma1+~-+am

y Z(m—l)b1+---+bm~1+mj‘]
— E[Z(N1+N241)++mfbl+“'+ﬁm

X Z(m—1)61+'~-+bm_1+mf1{1\&#0 or st,,go}]
+E [z(N1+N2‘1)++m&1+---+am
X Z(mfl)bl+~~~+bm~1+mf1{N1:O, N2:0}]
A(z™)F(zm
AP,
<
+ FE [z(m_l)”1+"'+ﬂmf1+Nl

x Zm=DbitetbmaatNay o N#O}H

1
= ;A(zm)F(zm)R(zm_l7 ez, 2™ 2 2)

1
+ AT F (™) <1 - ;) Po
(35)
By setting x;, = y, = z%* k=1, .., m -1, in eqn. 10,
we obtain
_ AG™)BE") (= 1)po
z — A(z™)B(z™)
(36)
By substituting the above result into eqn. 32, we can
finally derive

R(z™ Y z,2m7 %)

[(z) = A(z™) F(2™) [(1 - %) S figgggn)

(Y)n

m m 1 K1
— A(z™)F(z™) (1 - ;) A
_AETFE(E - 1)
T z— A(zm)B(z™)

Po
(37)

On the other hand, the probability generating function

F(z) of the random variable /' [9] is given easily by

_ _B(x)-1

- (z-1)B(Q1)

Therefore, we obtain the probability generating func-
tion W (z) for the waiting time of a type-2 message:

F(z) (38)
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W3 (z) = U(26(z)) (39)
where 6(z) is the delayed busy period generated by

type-1 messages arriving during a slot, as in Section
4.1.

30 — , . : . -
m=8/ |
o L i 4
g 20 ; /
fud i
=4 i
= /
c
& /
g 10t / E
m=8
- ‘m=4
O 1 A A L i m=4
0.4 0.5 0.6 0.7 0.8 0.9 1.0
total load
Fig.1 Mean waiting time against total load for p, = p, andm =4, 8
type-1
———= type?2
-+~ — no priority
8 -
)
£
o
£
=
2
c
5]
@
£

0.4 0.5 0.6 0.7 0.8 0.9 1.0
total load

Fig.2  Mean waiting time of type-1 against total load for p; = p, and m
=148

< train
+ batch

40

mean waiting time

2

04 05 08 07 08 09 10
total load

Fi?. 3 s Mean waiting time of type-2 against total load for p; = p, and m

& train
+ batch
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5 Numerical examples

We consider a statistical multiplexer, at which fixed-
length packet-trains arrive. Assume that the number of
arriving type-i messages per slot follows a Poisson dis-
tribution with parameter p;, so that the probability gen-
erating functions are given by

Alz) = ePr(z=1)
B(z) = er?l=71) (40)

In Fig. 1, E[W,] and E[W,] are shown as a function of
p for p; = py and m = 4, 8. The mean waiting times for
a queueing system with no priority are displayed
together for comparision. Note that the mean waiting
time of type-1 packets is reduced at the expense of an
increased mean waiting time of type-2 packets. As
expected intuitively, the mean waiting time is an
increasing function of m for a given value of p, i.e. for
a given total load, fewer long messages result in longer
waiting times.

We also compare the train arrivals, where messages
enter the buffer at the rate of one packet per slot, with
the batch arrivals, where all the packets of a message
enter the buffer during the same slot. The waiting time
in the case of batch arrivals can be calculated [4]. In
Figs. 2 and 3, E[W;] and E[W,] are plotted against p
for Poisson train and Poisson batch arrival processes,
P = pyand m = 1, 4, 8. Figs. 2 and 3 show that the
mean waiting times for the batch arrivals are much
greater than those for the train arrivals. Thus, we con-
clude that the batch arrival assumption for messages is
not reasonable and, in practice, the impact of the train
arrival on performance cannot be ignored.
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